

W&M ScholarWorks

Data

3-2017

A Model Archive for a Coupled Hydrodynamic-Sediment Transport-Biogeochemistry Model for the Rhône River Subaqueous Delta, France

Julia Moriarty College of William and Mary, moriarty@vims.edu

Courtney K. Harris Virginia Institute of Marine Science, ckharris@vims.edu

Katja Fennel Dalhousie University

Kehui Xu Louisiana State University at Baton Rouge

Christophe Rabouille UMR CEA-CNRS-UVSQ, France

See next page for additional authors

Follow this and additional works at: https://scholarworks.wm.edu/data

🔮 Part of the Biogeochemistry Commons, Oceanography Commons, and the Sedimentology Commons

Recommended Citation

Moriarty, J. M., Harris, C. K., Fennel, K., Xu, K., Rabouille, C., and Friedrichs, M.A.M. 2017. A Model Archive for a Coupled Hydrodynamic-Sediment Transport-Biogeochemistry Model for the Rhône River Subaqueous Delta, France. Virginia Institute of Marine Science, College of William and Mary. https://doi.org/ 10.21220/V53P4Q

This Data is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Data by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

Authors

Julia Moriarty, Courtney K. Harris, Katja Fennel, Kehui Xu, Christophe Rabouille, and Marjorie A.M. Friedrichs

README Summary

Title: A Model Archive for a Coupled Hydrodynamic-Sediment Transport-Biogeochemistry Model for the Rhône River Sub-aqueous Delta, France

Publication Date: 2017.

Associated Publication:

Moriarty, J. M., Harris, C. K., Rabouille, C., Fennel, K., Friedrichs, M.A.M, and Xu, K. (accepted, March 2017). The Roles of Resuspension, Diffusion and Biogeochemical Processes on Oxygen Dynamics Offshore of the Rhone River, France: A Numerical Modeling Study. *Biogeosciences.*

Authors:

- Julia Moriarty (moriarty@vims.edu), Virginia Institute of Marine Science, The College of William & Mary, USA
- Courtney Harris (ckharris@vims.edu), Virginia Institute of Marine Science, The College of William & Mary, USA
- Katja Fennel (Katja.Fennel@dal.ca), Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3P 2A3, Canada
- Kehui Xu (kxu@lsu.edu), Coastal Studies Institute and Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Christophe Rabouille (christophe.rabouille@lsce.ipsl.fr), Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS-UVSQ and IPSL, Gif sur Yvette 91198, France
- Marjorie A.M. Friedrichs (marjy@vims.edu), Virginia Institute of Marine Science, The College of William & Mary, USA

Keywords: Rhône River Delta, France; sediment transport; biogeochemistry; numerical modeling; oceanography; Regional Ocean Modeling System (ROMS).

Description: These files are compressed versions of input files, model code, and output used for the associated publication in *Biogeosciences* (see above). Compressed files with the .gz file extension can be opened with Gzip GNU software (open source). Compressed files with the .tar file extension can be opened with Gzip Tar software (open source). Many of the input and output files use the NetCDF (Network Common Data Form) file format. These have "nc" as a file extension and can be read using a variety of open source tools: see

http://www.unidata.ucar.edu/software/netcdf/docs/ . For information about the Regional Ocean Modeling System (ROMS), its model code and input / output, see www.myroms.org .

Author contributions:

- 1 Moriarty Model development (~2013-2017).
- 2 Harris Oversaw all aspects of model development (2008-2017).

- 3 Fennel Provided access to Soetaert model and guidance during model development.
- 4 Xu Model development (2007-2008).
- 5 Rabouille Provided data for input files (waves, water column oxygen & nutrient concentrations, etc.) and seabed biogeochemistry data (porewater oxygen time-series and diffusive oxygen uptake) that were used to calibrate and evaluate the model.
- 6 Friedrichs Guidance on model development.

Funding: Funding was provided by the U.S. National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research (NA09NOS4780229, NA09NOS4780231) (Moriarty, Harris, Fennel, Xu), VIMS student fellowships (Moriarty), MISTRALS/MERMEX-River and ANR-11-RSNR-0002/ AMORAD (Rabouille), and by sponsors of W&M's computing facilities, including the National Science Foundation, the Commonwealth of Virginia Equipment Trust Fund and the Office of Naval Research.

Spatial Information: 43°19.2 N, 4°52 E; Rhone River sub-aqueous delta, Gulf of Lion, France

File	Description	
Input Files		
init_rhone3.nc.gz	Input File – Model Initialization	
rhone_waves3.nc	Input File - Wave Forcing	
bio_rhone.in.gz	Input File – Water column	
	Biogeochemistry Information	
sed_standard.in.gz	Input File - Sediment Information	
ocean_standard.in.gz	Input File – Model Run Information	
varinfo.dat.gz	Input File – List of variables	
sedbiotoy.h.gz	Input File – Options for Model	
	Compilation	
ana_grid.h.gz	Input File/Model Code: Model grid, air	
ana_pair.h.gz	pressure, wind stresses, and	
ana_smflux.h.gz	climatology of water column tracers	
ana_stflux.h.gz		
ata_tclima.h.gz		
Model Code		
build.bash.gz	Model Code - Script to Compile Model	
trunk_sbt2.tar	Model Code - Model Code	
Model Output		
*Note that for each sensitivity test, altered input files, as well as files for the no-		
resuspension model run for each sensitivity test, were included with the model		
output		

Files include:

results_standard.tar	Model Output - Standard Model Run
results_input_no_resuspension.tar	Model Output – No Resuspension
	Version of the Standard Model Run
results_input_b1.tar	Model Output –Low Seabed Diffusion
	Sensitivity Test from Moriarty et al.
	(2017)
results_input_b2.tar	Model Output –High Seabed Diffusion
	Sensitivity Test from Moriarty et al.
	(2017)
results_input_c1.tar	Model Output –No Organic Matter
	Partitioning Sensitivity Test from
	Moriarty et al. (2017)
results_input_l1.tar	Model Output –Low Lability
	Sensitivity Test from Moriarty et al.
	(2017)
results_input_l2.tar	Model Output –High Lability
	Sensitivity Test from Moriarty et al.
	(2017)
results_input_n1.tar	Model Output –Low Nitrification Rate
	Sensitivity Test from Moriarty et al.
	(2017)
results_input_n2.tar	Model Output –High Nitrification Rate
	Sensitivity Test from Moriarty et al.
	(2017)
results_input_p1.tar	Model Output –Low Particulate
	Organic Matter Sedimentation
	Sensitivity Test from Moriarty et al.
	(2017)
results_input_p2.tar	Model Output –High Particulate
	Organic Matter Sedimentation
	Sensitivity Test from Moriarty et al.
	(2017)
results_input_r1.tar	Model Output –Low Erosion Rate
	Parameter Sensitivity Test from
	Moriarty et al. (2017)
results_input_r2.tar	Model Output –High Erosion Rate
	Parameter Sensitivity Test from
	Moriarty et al. (2017)
results_input_s1.tar	Model Output –Low Inorganic
	Sedimentation Sensitivity Test from
	Moriarty et al. (2017)
results_input_s2.tar	Model Output –High Inorganic
	Sedimentation Sensitivity Test from
	Moriarty et al. (2017)
results_input_t1.tar	Model Output –Low Critical Shear

	Stress Sensitivity Test from Moriarty et al. (2017)
results_input_t2.tar	Model Output –High Critical Shear
	Stress Sensitivity Test from Moriarty
	et al. (2017)