2,211 research outputs found

    Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner

    Get PDF
    The viability of a possible cosmological scenario is investigated. The theoretical framework is the constrained next-to-minimal supersymmetric standard model (cNMSSM), with a gravitino playing the role of the lightest supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest supersymmetric particle (NLSP). All the necessary constraints from colliders and cosmology have been taken into account. For gravitino we have considered the two usual production mechanisms, namely out-of equillibrium decay from the NLSP, and scattering processes from the thermal bath. The maximum allowed reheating temperature after inflation, as well as the maximum allowed gravitino mass are determined.Comment: 20 pages, 5 figure

    p38 Mapk signal pathway involved in anti-inflammatory effect of chaihu-shugan-san and shen-ling-bai-zhu-san on hepatocyte in non-alcoholic steatohepatitis rats

    Get PDF
    Background: Traditional Chinese Medicine (TCM), has over thousands-of-years history of use. Chaihu-Shugan-San (CSS), and Shen-ling-bai-zhu-San (SLBZS), are famous traditional Chinese herbal medicine formulas, which have been used in China, for the treatment of many chronic diseases.Materials and Methods:This study investigated the anti-inflammatory effects of CSS and SLBZS on signaling molecules involved in p38 mitogen-activated protein kinase (p38 MAPK), pathway on hepatocytes of non-alcoholic steatohepatitis (NASH), rats induced by high fat diet. SD male rats were randomly divided into 8 groups: negative control group, model control group, high (9.6g/kg/day)/low (3.2g/kg/day)-dose CSS group, high (30g/kg/day)/low (10g/kg/day)-dose SLBZS group, high (39.6g/kg/day)/low (13.2g/kg/day)-dose integrated group. The rats of NASH model were induced by feeding a high-fat diet. After 16, wks, Hepatocytes were isolated from 6, rats in each group by collagenase perfusion. The liver histopathological changes and serum inflammatory cytokines TNF-α, IL-6 were determined. The proteins of TLR4,  phosphor-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway were assayed.Results: The statistical data indicated the NASH model rats reproduced typical histopathological features of NASH in human. CSS and SLBZS ameliorated lipid metabolic disturbance, attenuated NASH progression, decreased the levels of TNF-α and IL-6 in serum, as well as inhibited TLR4 protein expression, p38 MAPK phosphorylation, and activation of p38 MAPK. In conclusion, CSS and SLBZS might work as a significant anti-inflammatory effect on hepatocyte of NASH by inhibiting the activation of TLR4, p-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway.Conclusion: To some extent, CSS and SLBZS may be a potential alternative and complementary medicine to protect against liver injury, alleviate the inflammation reaction, moderate NASH progression.Key words: p38 mitogen-activated protein kinase; Toll like receptor 4; Hepatocytes; Non-alcoholic Steatohepatitis; Traditional Chinese medicine

    Note on New KLT relations

    Full text link
    In this short note, we present two results about KLT relations discussed in recent several papers. Our first result is the re-derivation of Mason-Skinner MHV amplitude by applying the S_{n-3} permutation symmetric KLT relations directly to MHV amplitude. Our second result is the equivalence proof of the newly discovered S_{n-2} permutation symmetric KLT relations and the well-known S_{n-3} permutation symmetric KLT relations. Although both formulas have been shown to be correct by BCFW recursion relations, our result is the first direct check using the regularized definition of the new formula.Comment: 15 Pages; v2: minor correction

    Aspects of Non-minimal Gauge Mediation

    Full text link
    A large class of non-minimal gauge mediation models, such as (semi-)direct gauge mediation, predict a hierarchy between the masses of the supersymmetric standard model gauginos and those of scalar particles. We perform a comprehensive study of these non-minimal gauge mediation models, including mass calculations in semi-direct gauge mediation, to illustrate these features, and discuss the phenomenology of the models. We point out that the cosmological gravitino problem places stringent constraints on mass splittings, when the Bino is the NLSP. However, the GUT relation of the gaugino masses is broken unlike the case of minimal gauge mediation, and an NLSP other than the Bino (especially the gluino NLSP) becomes possible, relaxing the cosmological constraints. We also discuss the collider signals of the models.Comment: 56 pages, 8 figures; v2:minor corrections, references added; v3:minor correction

    NLSP Gluino Search at the Tevatron and early LHC

    Full text link
    We investigate the collider phenomenology of gluino-bino co-annihilation scenario both at the Tevatron and 7 TeV LHC. This scenario can be realized, for example, in a class of realistic supersymmetric models with non-universal gaugino masses and t-b-\tau Yukawa unification. The NLSP gluino and LSP bino should be nearly degenerate in mass, so that the typical gluino search channels involving leptons or hard jets are not available. Consequently, the gluino can be lighter than various bounds on its mass from direct searches. We propose a new search for NLSP gluino involving multi-b final states, arising from the three-body decay \tilde{g}-> b\bar{b}\tilde{\chi}_1^0. We identify two realistic models with gluino mass of around 300 GeV for which the three-body decay is dominant, and show that a 4.5 \sigma observation sensitivity can be achieved at the Tevatron with an integrated luminosity of 10 fb^{-1}. For the 7 TeV LHC with 50 pb^{-1} of integrated luminosity, the number of signal events for the two models is O(10), to be compared with negligible SM background event.Comment: 14 pages, 4 figures and 3 tables, minor modifications made and accepted for publication in JHE

    Goldstini

    Get PDF
    Supersymmetric phenomenology has been largely bound to the hypothesis that supersymmetry breaking originates from a single source. In this paper, we relax this underlying assumption and consider a multiplicity of sectors which independently break supersymmetry, thus yielding a corresponding multiplicity of goldstini. While one linear combination of goldstini is eaten via the super-Higgs mechanism, the orthogonal combinations remain in the spectrum as physical degrees of freedom. Interestingly, supergravity effects induce a universal tree-level mass for the goldstini which is exactly twice the gravitino mass. Since visible sector fields can couple dominantly to the goldstini rather than the gravitino, this framework allows for substantial departures from conventional supersymmetric phenomenology. In fact, this even occurs when a conventional mediation scheme is augmented by additional supersymmetry breaking sectors which are fully sequestered. We discuss a number of striking collider signatures, including various novel decay modes for the lightest observable-sector supersymmetric particle, gravitinoless gauge-mediated spectra, and events with multiple displaced vertices. We also describe goldstini cosmology and the possibility of goldstini dark matter.Comment: 14 pages, 7 figures; references adde

    LHC Searches for Non-Chiral Weakly Charged Multiplets

    Get PDF
    Because the TeV-scale to be probed at the Large Hadron Collider should shed light on the naturalness, hierarchy, and dark matter problems, most searches to date have focused on new physics signatures motivated by possible solutions to these puzzles. In this paper, we consider some candidates for new states that although not well-motivated from this standpoint are obvious possibilities that current search strategies would miss. In particular we consider vector representations of fermions in multiplets of SU(2)LSU(2)_L with a lightest neutral state. Standard search strategies would fail to find such particles because of the expected small one-loop-level splitting between charged and neutral states.Comment: 16 pages, 9 figure

    Relic densities including Sommerfeld enhancements in the MSSM

    Get PDF
    We have developed a general formalism to compute Sommerfeld enhancement (SE) factors for a multi-state system of fermions, in all possible spin configurations and with generic long-range interactions. We show how to include such SE effects in an accurate calculation of the thermal relic density for WIMP dark matter candidates. We apply the method to the MSSM and perform a numerical study of the relic abundance of neutralinos with arbitrary composition and including the SE due to the exchange of the W and Z bosons, photons and Higgses. We find that the relic density can be suppressed by a factor of a few in a seizable region of the parameter space, mostly for Wino-like neutralino with mass of a few TeV, and up to an order of magnitude close to a resonance.Comment: 23 pages, 7 figures; table 1 corrected and rearranged, numerical results practically unchanged, matches published versio

    Warped Radion Dark Matter

    Full text link
    Warped scenarios offer an appealing solution to the hierarchy problem. We consider a non-trivial deformation of the basic Randall-Sundrum framework that has a KK-parity symmetry. This leads to a stable particle beyond the Standard Model, that is generically expected to be the first KK-parity odd excitation of the radion field. We consider the viability of the KK-radion as a DM candidate in the context of thermal and non-thermal production in the early universe. In the thermal case, the KK-radion can account for the observed DM density when the radion decay constant is in the natural multi-TeV range. We also explore the effects of coannihilations with the first KK excitation of the RH top, as well as the effects of radion-Higgs mixing, which imply mixing between the KK-radion and a KK-Higgs (both being KK-parity odd). The non-thermal scenario, with a high radion decay constant, can also lead to a viable scenario provided the reheat temperature and the radion decay constant take appropriate values, although the reheat temperature should not be much higher than the TeV scale. Direct detection is found to be feasible if the DM has a small (KK-parity odd) Higgs admixture. Indirect detection via a photon signal from the galactic center is an interesting possibility, while the positron and neutrino fluxes from KK-radion annihilations are expected to be rather small. Colliders can probe characteristic aspects of the DM sector of warped scenarios with KK-parity, such as the degeneracy between the radion and the KK-radion (DM) modes.Comment: 43 pages, 16 figures; added reference

    Higgs friends and counterfeits at hadron colliders

    Get PDF
    We consider the possibility of "Higgs counterfeits" - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving "Higgs friends," fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW, ZZ, gamma gamma, or even gamma Z, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with "effective Z's," where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe
    corecore