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1 Introduction

In the latest years a number of experiments have contributed to develop a deep under-

standing of the standard model of cosmology. Most cosmological parameters have been

measured with a level of precision hardly foreseeable a decade ago; among these, there is

the cold dark matter (CDM) contribution to the Universe energy density. E.g., a recent

analysis, within the 6-parameter ΛCDM model, of the 7-year WMAP data [1], combined

with the distance measurements from the baryon acoustic oscillations in the distribution of

galaxies [2] and the recent redetermination of the Hubble Constant with the Hubble Space

Telescope [3], gives [4]:

ΩCDMh
2 = 0.1123 ± 0.0035 (68% CL uncerinities), (1.1)

where Ω indicates the ratio between mean density and critical density, and h is the Hubble

constant in units of 100 km s−1 Mpc−1.

The nature of the CDM term is still unknown; one of the most attractive scenarios is

that dark matter is a thermal relic from the early Universe: in this context, stable weakly

interacting massive particles (WIMPs) are ideal CDM candidates, as their thermal relic
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abundance is naturally of the order of the measured one (for a recent review on WIMP DM

see, e.g., [5]). Since the accuracy in the experimental determination of ΩCDM has reached

the few per cent level, it is necessary to have equally accurate theoretical predictions for

the relic abundance of WIMPs. Indeed, there may be a number of effects involved in this

calculation, requiring a proper treatment and possibly making the final result differ even by

orders of magnitude from the simple and naive estimate that the relic density scales with the

inverse of the total WIMP pair-annihilation cross section in the non-relativistic regime, and

it takes the appropriate value when the annihilation rate is about 3 · 10−26 cm3 s−1. Such

features include, e.g., threshold or resonance effects, co-annihilation effects (namely the

interplay among several particles, nearly degenerate in mass, rather than a single WIMP)

or three-body final states. Lately, some attention has been dedicated the case of WIMPs

with annihilation cross sections strongly dependent on the velocity of the incoming pair.

Such interest has been triggered by the fact that cross sections much larger the standard

value seems to be needed to provide a DM positron source accounting for the rise in the

positron fraction in the local cosmic-rays that has been measured by PAMELA [6]: the idea

is to explain such mismatch in terms of the mismatch between the velocity of the WIMPs at

freeze-out in the early Universe, soon after entering the non-relativistic regime, i.e. for about

v/c ∼ 0.3, with the velocity of WIMPs in our Galactic halo, i.e. about v/c ∼ 10−3, see,

e.g., [7]. A feature of this kind is predicted by to the so-called Sommerfeld enhancement [8],

namely the increase in the cross section occurring for highly non-relativistic particles in the

presence of a long-range attractive force that deforms the wave function of the incoming

pair with respect to the standard plane wave approximation.

The Sommerfeld enhancement effect in the context of WIMP DM has been studied first

in refs. [9, 10]; these authors considered, within a supersymmetric extension of the standard

model of elementary particles, the case of pure Wino or pure Higgsino DM and showed that,

when these states are very massive, at the TeV scale or heavier, the weak force can play

the role of a long-range force since its carriers, the W and Z bosons, are much lighter. The

impact on the relic density calculation for this case was discussed in ref. [11]. Later, the

Sommerfeld enhancement and its implication on the relic density has been studied in the

context of the minimal dark matter model [12, 13], still referring to standard interactions

and very massive WIMPs. More recently, in light of the PAMELA anomaly, several authors,

including, e.g., [7, 14–25], have considered a few aspects of the connection with WIMP

DM, considering models for which a new dark force, carried by some yet-to-be-discovered

light boson, provides a very large enhancement in the cross section. In our analysis we

reconsider the case of supersymmetric DM, and discuss the effect in the general context

of the minimal supersymmetric extension to the standard model (MSSM), with arbitrary

Wino and Higgsino components in the lightest neutralino,1 applying and developing the

formalism introduced in ref. [26] (the derivation of the Sommerfeld enhancements from field

theory was discussed also in [27], see also [28]). Such formalism is more suitable to treat a

realistic case of neutralino DM than the approach based on implementing a non-relativistic

effective action followed by previous work on this subject [9] (see also [12]).

1We will restrict to the case of negligible bino fraction since there is no Sommerfeld enhancement on

trivial representation of SU(2)L.
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The new calculation that we present in this paper is then used to refine the computa-

tion of the thermal relic density of neutralinos. To solve the corresponding set of Boltzmann

equations we use the very accurate method given in the public available DarkSUSY pack-

age [29], appropriately modified to include Sommerfeld enhancement effects. Hence, we

provide here a tool for very high precision estimates of relic abundances of neutralino DM

in the MSSM, at a level comparable or better than the accuracy in the value for ΩCDMh
2

from current and upcoming observations.

The paper is organized as follows: In section 2 we introduce the Sommerfeld enhance-

ment and sketch the limits in which it may be relevant, while section 3 discusses our

approach to the case of N -coupled states. In section 4 we detail the technique we use

to implement the Sommerfeld effect in the relic density computation. Section 5 discusses

our particle physics setup, while in section 6 we present the results within this framework.

Section 7 concludes.

2 Sommerfeld enhancement

We start with an short overview of the Sommerfeld effect itself and recap of the literature on

the subject. The Sommerfeld enhancement is a non-relativistic effect resulting in correcting

the cross section (in our case of interest the annihilation cross section) due to presence of

some “large distance force” between the particles in the incoming state. It is generally

described as an effect of distorting the initial wave function ψ(~r) of the incoming two-

particle state by a non-relativistic potential. This potential is taken to be Yukawa or

Coulomb, as the force arises due to exchange of massive or massless boson. The whole

effect can then be encoded into the ratio between the wave function of the incoming, free

particle (at r → ∞) and the distorted one at the point of annihilation (at r = 0). Thus

one usually defines the enhancement factor being

S =
|ψ(∞)|2
|ψ(0)|2 , (2.1)

which multiplies the cross section

σfull = S · σ0 . (2.2)

Many authors have discussed this effect introducing a new interaction, mediated by some

scalar or vector boson φ. If one assumes one species of annihilating particle χ with mass

much larger than the mass of force carrier, mχ ≫ mφ, and a coupling of the order of

the weak scale or larger, then one can get a large enhancement of the cross section.

This can have a very important implications for indirect dark matter searches and relic

density computations.

The standard approach to estimate the enhancement is to introduce an interaction

potential in the form:

V = α
e−mφr

r
, (2.3)

and solve the Schördinger equation for the incoming two-particle state to find the wave

function distortion; there are however a few issues one should be careful about. First, the
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coefficient α in the potential depends on the nature of the incoming state and the possible

type(s) of interaction. In particular, when the effect involves fermions, it is different if the

interacting particles are Dirac or Majorana and whether they are identical or not; this is

especially important when co-annihilations enter the computation of the relic density.

To stress other delicate points, it is useful to recap first what are the conditions for

the enhancement to be sizable. The Sommerfeld enhancement can be viewed as occurring

due to forming a loosely bound state due to long-range interaction. In order to have such

a bound state the characteristic Bohr energy of the interaction need to be larger than the

kinetic energy. In the limit mφ → 0, this gives a condition α2mχ & mχv
2, i.e.:

v . α . (2.4)

For a typical WIMP the coupling is of order α ∼ 0.03, so that there can be some sizable

enhancement only long after freeze-out (which happens for v ∼ 0.3). However, if there

exists a slightly heavier state, then it may happen that just after freeze-out DM particles

have enough energy to produce it nearly on-shell. At threshold these heavier states are

produced with, roughly speaking, zero velocity. As we will see later on, if the mass splitting

of the DM and the heavier state is small enough, this may give rise to important changes

in the relic density.

A second condition comes from the comparison of the range of the Yukawa potential

with the Bohr radius. In order for the interaction to distort the wave function signifi-

cantly, the range of the potential cannot be much smaller than the Bohr radius of the

two-particle state,
1

mφ
&

1

αmχ
. (2.5)

In case of very large enhancements, this condition needs to be even stronger, i.e. the

range of potential has to be much larger than the Bohr radius. However, even in case of

enhancements of order unity one should treat carefully the regime when mφ ≈ αmχ.

When considering a system of two states with small mass splitting δm interacting

off-diagonally there is another important constraint. If δm is significantly larger than the

kinetic energy, it may seem that the heavier state cannot be produced, and hence there is

no enhancement. However, if the potential is strong enough, there still may be an effect,

coming from producing the heavier state at small distances, where the potential energy is

large. Thus the condition reads:

2δm . α2mχ + E , (2.6)

meaning that the characteristic Bohr energy of the potential plus the kinetic energy E
is large enough to produce the heavier state. Moreover, when dealing with multi-state

systems, the picture of the Sommerfeld enhancement as an effect of a static, long range

force is no longer applicable. This is because the exchange of φ leads to a momentum and

energy transfer due to the mass splitting δm and one may need to take into account terms

of order O(δm/m) modifying the interaction potential.

When dealing with a specific particle physics setup like, e.g., the MSSM, several such

complications may intervene at the same time: a simple parametric description is not
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Figure 1. Ladder diagrams for the Sommerfeld enhancement. a) incoming χiχj particles interact

with exchange of φ’s (in general different), which can be a scalar, vector or axial vector bosons. In

the ladder a virtual states χi′χj′ can be produced and the final annihilation proceed in the channel

which can be different than initial one. Filled blob represents full annihilation process with any

number of SM particles in final state, while the empty one its tree level counterpart. b) the same

but written in a recursive form; sum is over all possible intermediate states and exchanged bosons.

possible and for a proper estimate of the Sommerfeld effect and its impact on the relic

density, a computation within a fully general formalism is needed. We introduce this in

the next section.

3 Sommerfeld effect for N coupled states

We are interested in the general case with N two-particle fermionic states coupled together.

They interact with “long-range forces” due to the exchange of some boson φ, denoting

generically a vector, an axial vector or a scalar boson (in the MSSM those correspond to

Z0, W±, γ, H1,2 and H±). The Sommerfeld enhancement corresponds to computing in

the non-relativistic limit the sum of ladder diagrams as presented on the figure 1a. The

structure of those diagrams can be in general very complicated, since all states can appear

in one diagram, through different interactions. The approach we follow to address the

this problem is a generalization of the one developed in [26]. We start from writing the

recurrence relation for the annihilation amplitudes as presented pictorially on figure 1b.

Let’s consider a process of the type

χaχb → χiχj → χ′
iχ

′
j → . . .→ SM final states , (3.1)

where the intermediate pairs χiχj can be the same or different as the initial pair χaχb.

The spin of the initial pair, which in the non-relativistic limit is a conserved quantity, can

be in general either in the singlet (S = 0) or triplet (S = 1) state. For every possible χiχj

pair we get a recurrence relation for its annihilation amplitude. Denoting this amplitude

by Aij and its tree level value by A0
ij, one obtains in the non-relativistic limit [26]:

Aij(p) = A0
ij(p) −

∑

i′j′φ

Nij,i′j′
gii′φgj′jφ

(2π)3

∫

d3k

(~p− ~k)2 +m2
φ

Ai′j′(k)
~k2

2mi′j′
r

− E + 2δmi′j′

, (3.2)
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where the sum is over different χi′χj′ intermediate states and different interactions. Here

E = ~p 2/2mab
r is kinetic energy of incoming pair (at infinity), with mab

r the reduced mass

and ~p the CM three-momentum, 2δmij = mi + mj − (ma + mb) the mass splitting, gii′φ

and gj′jφ are the coupling constants and Nij,i′j′ is the term containing normalization and

combinatorial factors.

To rewrite the expression above in the form of the Schrödinger equations we make

following redefinitions:

Aij(~p) =

(

~p2

2mij
r

− E + 2δmij

)

ψ̃ij(~p), (3.3)

U0
ij(~r) =

∫

d3~p ei~p·~rA0
ij(~p, P0), (3.4)

ψij(~r) =

∫

d~p ei~p·~rψ̃ij(~p), (3.5)

which allows us to rewrite eq. (3.2) as a differential equation:

− ∂2

2mij
r

ψij(~r) = U0
ij(~r) + (E − 2δmij)ψij(~r) +

∑

i′j′φ

V φ
ij,i′j′ψi′j′(~r), (3.6)

where φ refers to the particle being exchanged (scalar, vector or axial vector boson). The

potential has the form

V φ
ij,i′j′(r) =

cij,i′j′(φ)

4π

e−mφr

r
, (3.7)

with cij,i′j′(φ) being coefficients depending on the couplings and states involved. An efficient

way of computing them is explained in appendix A and the results in case of a system

involving one spin 1/2 Dirac fermion and/or two different Majorana spin 1/2 fermions are

summarized in table 1. Whether the potential is attractive or repulsive is hidden in the

sign of the coefficients c and depends on the interaction type. The exchange of scalars

is always attractive in the spin singlet (i.e. overall plus sign), but can also be repulsive

in the triplet. Vector and axial bosons can give attractive or repulsive forces, depending

on the charges.

Notably in the approach outlined here we can split different interaction types (i.e.

mediated by different bosons or with different couplings etc.) within a ladder diagram and

consider them separately. The trade-off is that every possible intermediate two-particle

state will lead to one equation, so in such a general case we will need to consider a set

of coupled Schrödinger equations. These equations are inhomogeneous; however, since the

Sommerfeld enhancement factorizes out from the annihilation matrix, as it does not depend

on the final states but enters only as a distortion of the incoming wave function, one can

compute it by solving the associated homogeneous, using the partial waves decomposition,

as described in [26]. We will be interested only in the s-wave, but it is straightforward

(though not always easy numerically) to extend the analysis to higher partial waves.
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Spin singlet

φ : scalar (Γ = 1) vector (Γ = γ0) axial (Γ = γiγ5)

c+−,+− g2 g2 −3g2

c++,++ g2 −g2 −3g2

cii,+−

√
2|gi+|2

√
2|gi+|2 −3

√
2|gi+|2

cij,+− 2Re (gi+g
∗
j+) 2Re (gi+g

∗
j+) −6Re (gi+g

∗
j+)

cii,jj 2|gij|2+g2
ij+g

∗2
ij 2|gij|2 − g2

ij − g∗2ij −3(2|gij|2+g2
ij+g

∗2
ij )

cij,ij 2|gij|2+g2
ij+g

∗2
ij +4giigjj −2|gij|2+g2

ij+g
∗2
ij −3(2|gij|2+g2

ij+g
∗2
ij ) − 12giigjj

c+i,+i |gi+|2+2giig −|gi+|2 −3|gi+|2 − 6giig

c+i,+j gi+g
∗
j++2gRe(gij) −gi+g

∗
j+ − 2giIm (gij) −3gi+g

∗
j+ − 6gRe (gij)

cii,ii 4g2
ii 0 −12g2

ii

cij,ii 4
√

2giiRe (gij) 0 −12
√

2giiRe (gij)

Spin triplet

c+−,+− g2 g2 g2

c++,++ g2 −g2 g2

cii,+− 0 0 0

cij,+− 2iIm (g∗i+gj+) 2iIm (g∗i+gj+) 2iIm (g∗i+gj+)

cii,jj 0 0 0

cij,ij −(2|gij|2+g2
ij+g

∗2
ij )+4giigjj 2|gij|2 − g2

ij − g∗2ij −(2|gij|2+g2
ij+g

∗2
ij )+4giigjj

c+i,+i −|gi+|2+2ggii |gi+|2 −|gi+|2+2ggii

c+i,+j −gi+g
∗
j++2gRe (gij) gi+g

∗
j+ − 2giIm (gij) −gi+g

∗
j++2gRe(gij)

cii,ii 0 0 0

cij,ii 0 0 0

Couplings: gΓ
ijχ̄jΓχiφ (+h.c. iff i 6=j), gΓ

i+ψ̄Γχiφ +h.c., gΓψ̄Γψφ, where Γ=1, γ0, γiγ5

Table 1. List of all possible coefficients in the potential V φ
ij,i′j′(r) for the Sommerfeld effect compu-

tation. The table includes any annihilation process involving one spin 1/2 Dirac fermion (denoted

by + or − depending on whether it is a particle or antiparticle) and/or two different Majorana

spin 1/2 fermions (denoted by i and j), for an even partial wave. Couplings are defined in the

last line for each Γ, where χ is a Majorana fermion, ψ a Dirac field, φ is the exchanged boson.

When applied to the MSSM, where one needs to consider a chargino and one or two neutralinos,

some of the coefficients vanish due to the CP conservation and couplings of type gii are negligible.

The overall ”+” sign refers to an attractive force while ”−” to a repulsive force. Note also that

cij,kl = c∗kl,ij .

To reduce these equations in a form more suitable for numerical calculations, after the

partial wave decomposition we define the reduced radial wave function ϕ(x) as

Rij
p,l(r) = Np

ϕij
l (x)

x
, x = pr , (3.8)

where N is some normalization constant and p is the value of the CM three-momentum for

one of the incoming particles (a or b). Since we restrict to the s-wave case l = 0, we will

– 7 –
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drop the l index from now on. From (3.6) one get then set of equations2 for the ϕij(x):

d2ϕij(x)

dx2
+
mij

r

mab
r





(

1 − 2δmij

E

)

ϕij(x) +
1

E
∑

i′j′φ

V φ
ij,i′j′(x)ϕ

i′j′(x)



 = 0 . (3.9)

To obtain the enhancement we need to solve this set of equations with appropriate boundary

conditions. In x = 0 they are set by the requirement that the solution is regular. In x→ ∞
the solution has to describe one incoming χaχb state and all the possible χiχj states that

can be produced in the ladder. For the latter there can be two cases:

1. 2δmij < E — there is enough energy to produce on-shell states χiχj,

2. 2δmij > E — there is not enough energy; states χiχj are off-shell.

The radial wave functions behave at infinity as:

Rab(r) → Cab
1

2i

eikabr

r
− 1

2i

e−ikabr

r
, (3.10)

for the incoming pair and

Rij(r) →
{

Cij
2

2i
eikijr

r if on − shell,
Dij

2

2i
e−|kij |r

r if off − shell,
(3.11)

for every other intermediate state χiχj . We use the normalization of the wave function to

be such, that for the non-interacting case Rab = sin(kabr)/r (for details see [26]). After

changing the variable to x = kab · r and defining qij = mij
r /mab

r · (1 − 2δmij/E) we get set

of boundary conditions for the reduced wave functions at x→ ∞:

iϕab − ∂xϕ
ab = −e−ix, (3.12)

{

i
√
qijϕ

ij − ∂xϕ
ij = 0 if on − shell,√−qijϕij + ∂xϕ
ij = 0 if off − shell.

(3.13)

To check our numerics we can use the unitarity condition, saying that:

1 = |Cab
1 |2 +

∑

ij

√
qij|Cij

2 |2. (3.14)

Since the set of boundary conditions depends on the initial particles masses and energy,

the solutions to the Schrödinger equations, i.e. the wave functions, depend on the initial

conditions of the incoming pair χaχb: to be precise we should call them then ϕij
(ab)(x).

After solving (3.9) the (co-)annihilation cross section of the pair χaχb is determined, up to

the kinematical factor, by

σ(ab) ∝
∑

ij

Sij
(ab) · |A

0
ij |2, (3.15)

2This form is most suitable for numerical solutions, while often it is presented not in terms of the CM

momentum, but rather relative velocity of incoming particles, being equal to v = p/mab
r .
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where the enhancement factors with our normalization are

Sij
(ab) = |∂xϕ

ij
(ab)|

2
x=0 . (3.16)

It is important to note, that the computation of the enhancement depends on the spin

state of the initial 2-body state (see table 1). This means that one needs to project each

annihilation cross section into two parts, one for the singlet and one for the triplet initial

spin state, multiply each of them by a different enhancement factor. The method we used

to do so is described in appendix B.

Would one need to include higher partial waves, one has to compute cij,i′j′(φ) coeffi-

cients for odd partial waves, add a centrifugal term to the equations (3.6) and (3.9) and

modify the expression for the enhancement, see [26].

4 Relic density computation

The multi-state scenario we have just introduced for the Sommerfeld enhancement is a

typical setup in which the computation of the thermal relic density for the lightest of

such states is strongly affected by co-annihilations [30, 31]. To model this effect, we will

follow here the approach of ref. [32], appropriately modified to include the Sommerfeld

enhancements; such treatment will not involve approximations in the way thermally av-

eraged annihilation cross sections are computed, while the density evolution equation is

solved fully numerically. We summarize briefly here the steps involved in the computation.

Let χ1, χ2, . . .χM , be a set of M particles, each with mass mi (the ordering is such that

m1 ≤ m2 ≤ · · · ≤ mM ) and number of internal degrees of freedom hi, sharing a conserved

quantum number so that: i) if kinematically allowed, inelastic scatterings on SM thermal

bath particles can turn each of these states into another, and ii) χ1 is stable. If the mass

splitting between the heaviest and the lightest is comparable with m1/20, roughly speaking

the freeze out temperature for a WIMP, all these states have comparable number densities

at decoupling and actively participate to the thermal freeze out. A system of M coupled

Boltzmann equations can be written to trace the number density ni of each single state;

since, however, after freeze out all heavier states decay into the lightest, one usually solves

a single equation written for the sum of the number densities, n =
∑

i ni, i.e. [32]:

dn

dt
+ 3H n = −〈σeffv〉

[

n2 − (neq)2
]

, (4.1)

with the effective thermally averaged annihilation cross section:

〈σeffv〉 =
∑

i,j

〈σijvij〉
neq

i

neq

neq
j

neq
(4.2)

written as a weighted sum over the thermally averaged annihilation cross section for pro-

cesses of the type χi+χj →X (in the dilute limit, two-body initial state processes dominate):

〈σijvij〉 =
1

neq
i neq

j

∑

X

∫

d3pi

2Ei

d3pj

2Ej

d3pX

2EX
δ4(pi + pj − pX)f eq

i (pi)f
eq
j (pj) |Aij→X |2 , (4.3)

– 9 –
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where the sum here is on the set X of allowed SM final states (normally only two-body

final states are considered) and d3pX/2EX stands symbolically for the integration over the

phase space in the final state. In the equations above neq
i =

∫

d3pf eq
i (pi) is the thermal

equilibrium number density for the species i, while neq the sum of neq
i over all states. There

are two main assumptions which allow to rewrite the system of M coupled Boltzmann

equations as the single equation for n, in analogy to the case one writes for one single

WIMP, with the usual term of dilution by volume on the l.h.s. and the depletion and

replenish terms on the r.h.s. The factorization of the individual terms in the sum of eq. (4.2)

is possible if one assumes that the shape of phase space densities for each particle χi

follows the shape of the corresponding thermal equilibrium phase space density, namely

fi(pi, t) = c(t) · f eq
i (pi, t) (with the coefficient c depending on time but not on momentum);

this is the case if the so-called kinetic equilibrium is maintained, i.e. if scattering processes

of the kind χi + Xl → χk + Xm (with k equal to i or different from it) on SM thermal

bath states Xl and Xm have a rate which is larger than the Universe expansion rate H.

The amplitudes for scattering and annihilation processes are usually comparable since the

two can be related via crossing symmetry; on the other hand scatterings are stimulated by

thermal bath states, which are relativistic and hence whose number density is much larger

than the number density of the particle χ at the freeze-out temperature ∼ m1/20. Hence

kinetic decoupling usually takes place much later than chemical freeze-out (chemistry here

indicates number density changing processes). Since, as we will show below, within the

particle physics setup we are considering the Sommerfeld factors are of order O(1), this is

typically the case even when the depletion term takes the Sommerfeld effect into account.

In case of a resonance the kinetic decoupling can indeed happen when the depletion term

is still active, as we will discuss in section 6.3. The kinetic decoupling can have a much

larger impact in more extreme scenarios, as discussed in ref. [14].

The second assumption which is implicit in eq. (4.1) is that one takes ni/n ≃ neq
i /n

eq,

a quantity which in the Maxwell-Boltzmann approximation for equilibrium phase space

densities, as appropriate for WIMPs, i.e. f eq
i (pi, t) = hi/(2π)3 exp(−Ei/T ), is proportional

to the number of internal degrees of freedom hi and is exponentially suppressed with the

mass splittings. Analogously to the first assumption, this approximation is valid in case

inelastic scatterings are active for the whole phase in which the depletion term is relevant.

Usually the thermally averaged annihilation cross sections in eq. (4.3) are computed at

the lowest order in perturbation theory taking tree-level amplitudes. Here we will include

the Sommerfeld effect introducing the rescaling |Aab|2 =
∑

ij S
ij
(ab) |A0

ij |2, with Sij
(ab) as

computed in previous section. Actually, since the effect can be interpreted as a rescaling in

the wave function of the incoming pair, Sij
(ab) does not depend on the final state X and can

be factorizes out of the total annihilation rate Wij . Following the same steps of ref. [32]

and adopting an analogous notation, one finds:

〈σeffv〉 =

∫ ∞
0 dpeffp

2
effSWeff(peff , T )K1

(√
s

T

)

m4
1T

[

∑

i
hi

h1

m2
i

m2
1

K2

(

mi

T

)

]2 , (4.4)
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where we have defined:

SWeff(peff , T ) =
∑

ab

∑

ij

pij

peff

hihj

h2
1

Sij
(ab)(peff , T )Wij(peff) (4.5)

with:

pij =
1

2

√

[s− (mi −mj)2][s− (mi +mj)2]

s
(4.6)

and peff = p11 = 1/2
√

s− 4m2
1. The explicit dependence of Sij

(ab) on T stems from the

fact that there may be an explicit dependence of the mass of the long-range force carriers

on temperature, see the discussion below; its dependence on the relative velocity of the

annihilating pairs has been rewritten instead in term of the integration variable, i.e. the

effective momentum peff .

5 Implementation of the method to the MSSM

We apply the general method outlined in the previous sections to one of the best moti-

vated and most extensively studied scenarios, namely the case of neutralino dark matter

in the MSSM. Since we will focus the discuss to cases in which the sfermion sector is not

playing any relevant role, to simplify the discussion and underline better which are the

key parameters, we choose actually to refer to the SUSY framework usually dubbed ”Split

Supersymmetry” [33, 34]. This indicates a generic realization of the SUSY extension to the

SM where fermionic superpartners feature a low mass spectrum (say at the TeV scale or

lower), while scalar superpartners are heavy, with a mass scale which can in principle range

from hundreds of TeV up to the GUT or the Planck scale [33], a feature which can occur in

wide class of theories, see, e.g. [35–37]. We will also leave out of our discussion the Gluino

and the gravitino, supposing they are (moderately) heavy, focussing the analysis on neu-

tralinos and charginos.3 The MSSM contains four neutralinos, spin 1/2 Majorana fermions

arising as the mass eigenstates from the superposition of the two neutral Gauginos, the

Bino B̃ and the Wino W̃ 3, and the two neutral Higgsino fields H̃0
1 and H̃0

2 :

χ̃0
i = Ni1B̃ +Ni2W̃

3 +Ni3H̃
0
1 +Ni4H̃

0
2 ; (5.1)

in the scheme we are considering the lightest neutralino is automatically the lightest SUSY

particle (LSP) and, possibly, a good WIMP dark matter candidate. The coefficients Nij ,

obtained by diagonalizing the neutralino mass matrix, are mainly a function of the Bino

and the Wino mass parameters M1 and M2, and of the Higgs superfield parameter µ, while

depend rather weakly on tanβ, the ratio of the vacuum expectation values of the two

neutral components of the SU(2) Higgs doublets, which appears in the off-diagonal terms

3The Sommerfeld effect does play a role in the pair annihilation rate of charged sfermions or gluinos,

and so it does affect the computation of the neutralino relic density in case of sfermion or gluino co-

annihilations; there is however no long-range interaction turning a pair of these particle into a neutralino

pair, and hence, contrary to case discussed in this paper, the different annihilation can be treated separately

and the calculation is simplified. An analysis dedicated to these co-annihilation channels will be presented

in ref. [38].
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of neutralino mass matrix. The two MSSM charginos are instead spin 1/2 Dirac fermions

obtained as mass eigenstates from one charged Wino state and one charged Higgsino; the

chargino composition is again mainly set by the relative weight of M2 and µ.

The long-range forces driving a sizable Sommerfeld effect are the weak force on neu-

tralinos and charginos due to the exchange of W± and Z0, and the electromagnetic force

with photon exchanges; we also include the effect of the charged Higgs H± and the two

CP-even neutral Higgs H0
1 and H0

2 , which however play a minor role. The last MSSM

scalar, the CP-odd neutral Higgs H0
3 , does not give rise to any contribution for s-wave

annihilations in the non-relativistic regime. Since the B̃ is not charged under SU(2)L, a

large Bino component in the lightest neutralino drastically reduces the relevance of the

Sommerfeld effect; we will then consider only the case of M1 ≫M2. Higgsinos and Winos

have a pair annihilation cross section into W and Z bosons which is fairly large, much

larger than the standard reference value for thermal relics of 3 · 10−26 cm3 s−1 if their

mass is at around 100 GeV. Going however for more massive neutralinos, namely around

1.1 TeV for Higgsinos and 2.2 TeV for Winos, the standard tree-level calculation of the

thermal relic density gives a result which is compatible with the measured value for the

energy density in CDM. This heavy mass regime is also the one in which the Sommerfeld

enhancement condition of mass of the particle much heavier than mass of the force carrier

is realized for weak interactions; hence relevant corrections to the tree-level estimate of

the relic abundance may arise [11, 13]. All the pair annihilation processes we will need to

consider are dominated by their s-wave contribution (unlike the case of the pair annihila-

tion of Binos into a fermion-antifermion); moreover the enhancement for the higher partial

waves is smaller, due to repulsive centrifugal term in the Schrödinger equation.4 We can

then safely assume that only the s-wave Sommerfeld effect is relevant.

As we stressed in section 2, the value of the mass splitting among the different states

is crucial in the analysis. When calculating the mass spectrum we include the radiative

corrections to the neutralino and chargino masses due to gauge boson loops [39, 40] (tree-

level neutralino and chargino masses are degenerate in the pure Higgsino or pure Wino

limits) and the thermal dependence of the Higgs VEVs. Thermal effects are also important

when considering vector boson masses, as already stressed in the analysis of ref. [12]. There

are two thermal effects which we need to include: First, we approximate the scaling of the

VEV v with temperature as [41]:

v(T ) = vRe

(

1 − T 2

T 2
c

)1/2

, (5.2)

with the critical temperature Tc depending on the Higgs mass (as in ref. [12], we will assume

Tc = 200 GeV). Second, we consider the contribution to gauge boson masses, or, in more

appropriate terms, to their propagator pole, due to the screening by the thermal plasma;

this effect can be approximated by adding the so-called Debye mass [42, 43], which in the

4This statement is not true only in the case of resonances. In the Coulomb case, when analytical

expressions can be derived, every partial wave is enhanced by the factor ∼ (α/v)2l+1, so for higher l

the resonant enhancement is higher and narrower. However, since one has to integrate over the thermal

distributions, the resonances are smeared and net impact of the higher partial waves is very small.
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SM and at T ≫ mW,Z are:

∆m2
γ =

11

6
gY T

2 , ∆m2
W,Z =

11

6
g2T

2 .

We will assume that these expressions are valid also for the MSSM and at lower tempera-

tures; the first assumption is justified by the fact that the contributions from the additional

states are small since these particles are heavy, the latter has a negligible impact on the

relic density calculation. The two effects introduce a correction to the Sommerfeld fac-

tors which is non-negligible, but still quite small, since they are important mostly for high

temperatures, at which the Sommerfeld effect is anyway negligible.

Having computed with high accuracy the mass spectra, we implement the procedure

for the relic density, considering a system of coupled equations which includes all states

with small mass splitting compared to the LSP. In practice this reduced to including two

Majorana and one Dirac fermion when µ < M2 (i.e. two neutralinos and one chargino,

mainly Higgsino-like) and one Majorana and one Dirac fermion when µ > M2 (i.e. one

neutralino and one chargino, mainly Wino-like). Additionally, since the Sommerfeld en-

hancements depend on the total spin of the initial pair, we considered each case separately

if needed. Again, in practice this is important only if the incoming particles are one neu-

tralino and one chargino: two identical Majoranas cannot form a s-wave spin triplet state,

the triplet of two different Majoranas has suppressed annihilations (it cannot annihilate

to W+W−), and for two charginos the effect comes dominantly via γ exchange, which is

vector and both singlet and triplet computations coincide.

6 Results and discussion

Having introduced the method and particle physics framework, we present results for the

Sommerfeld factors and the impact of the effect on the relic density of the neutralino. As

already explained, M2 and µ are the critical parameter in this problem; we will consider an

approach with parameters set at the low energy scale (rather than at a GUT scale as often

done) and let them vary freely. The other MSSM parameters are kept fixed: besides the

sfermion sector which is assumed to be heavy, and the Bino which is also decoupled with

the artifact of setting M1 = 100M2, we assume tan β = 30 and an Higgs sector with a light

SM-like Higgs and all other states that are heavy, as expected in split SUSY. The value

of tanβ has a very modest impact on results and considering other values does not bring

other information. In the same way, the other Higgs sector parameters have very little

relevance. For any given point in this two-dimensional parameter space, the relic density

calculation is performed computing first the coefficients Sij(v, T ) numerically, adopting a

standard adaptive 5th order Runge-Kutta method with shooting for solving the boundary

value problem [44].

6.1 Sommerfeld factors and the effective cross section

For any given point in the MSSM parameter space leading to a lightest neutralino χ0
1

which is heavy and has a large Wino or Higgsino fraction there are several Sommerfeld
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Figure 2. Example enhancement factors for M2 = 2.53TeV, µ = 5TeV and x = 20 (corresponding

to T ≈ 126GeV). Subscripts refer to the incoming state with 1 - χ0
1 and ± - χ±, while superscripts

to the annihilating one. The left panel shows Sommerfeld factors when the annihilating pair is the

same as the incoming one, while right panel when they are different. In the latter case these factors

approach 0 because at high momenta there is no Sommerfeld enhancement and the annihilation

amplitude is suppressed because it can only be obtained at 1-loop level at least. All factors are

computed for singlet spin state annihilation, except one indicated as tS being for triplet.

enhancement factors Sij
(ab)(v, T ) needed for a relic density computation. The interplay

between the different contributions to the thermal averaged effective cross section is in

most cases non-trivial. In figure 2 we give an example of Sij
(ab)(v, T ) for the case when the

neutralino is nearly purely W̃ 0, just to give a intuition of what magnitude of enhancement

factors we deal with. In this case in set of coupled equations (3.9) we have N ≤ 2,

i.e. only neutralino and chargino coupled together. One can see that the enhancements

are of order O(1) and very quickly go to 1 or to 0 in higher momenta and that most

channels are attractive while two are repulsive, namely χ+χ0
1 in the singlet spin state

and χ+χ+. Also, as expected, one gets the highest enhancement factor for the χ+χ−

channel, since there is a long range nearly5 Coulomb interaction present. For the cases

with two coupled equations and lighter states incoming we see a resonance in the value of

momentum corresponding to the mass splitting. This is easy to understand, since for this

energy the heavier states are produced nearly at rest, so they feel large effect coming from

for instance γ exchange. This is perfectly consistent with what was found in similar cases

using analytical approximations [16].

We are now ready to compute σeff and solve the Boltzmann equation as discussed in

section 4. Values for the effective annihilation cross section including the Sommerfeld effect

and without it are shown in figure 3 for sample cases of Wino- and Higgsino-like neutralino.

In the Higgsino-like case the effect is very mild. The Sommerfeld enhancement of

the effective cross section becomes relevant only in the small velocities regime, when the

depletion term in the Boltzmann equation is marginally effective. This gives rise to a

change in the relic density which is at most at the level of a few per cent. In the Wino-

like case the picture looks much more interesting. The net effect on the both yield and

5Due to the thermal corrections photon acquires small mass, which makes the potential to be Yukawa

type, and the enhancement factor saturates at small p.
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Figure 3. Number densities in units of entropy density Y and effective cross sections for the

Wino-like (top) and Higgsino-like neutralino (bottom). In the Wino case two set of parameters are

presented — generic one and close to the resonance.

σeff is clearly visible and can become even very large in the parameter range where large

resonance effects occur.

The reason for the difference in the behaviour of the Sommerfeld effect in the Wino- and

Higgsino-like case comes mainly from the mass splitting between the lightest neutralino and

chargino, which is typically much smaller in the Wino case. The Sommerfeld effect for the

neutralinos relies mostly on a production of nearly on-shell charginos in the loop. Also the

efficiency of co-annihilation, and subsequently the effect of the Sommerfeld enhancement

coming from its impact on co-annihilating particles, strongly depends on the mass splitting.

Hence, the larger the mass splitting the smaller the overall impact on the thermally averaged

cross section.6

6.2 Relic density

In figure 4 and 5 we show results for the neutralino relic density in the plane M2 versus

µ, varying these parameters in the range 500 GeV to 5 TeV, a region in which the thermal

relic density varies from values much below the cosmologically preferred one to much above

it. In the left panel of figure 4, we are plotting results assuming the usual tree-level

approximation for the pair annihilation amplitude, while in the right panel those including

the full treatment of the Sommerfeld effect are shown. Most manifestly, there is a sharp shift

in the Wino-like region consistent with the 7-year WMAP data to heavier masses; when

6Note however, that in general Sommerfeld factors themselves are not monotonic functions of the mass

splitting, see e.g. ref. [16].
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Figure 4. Relic density Ωh2 in the µ-M2 plane for perturbative case (left panel) and with Som-

merfeld effect included (right panel). The brighter the colour the higher Ωh2 and the colour scale

is linear. The solid line and dashed lines correspond to the central value and the 1 σ error bar for

relic density consistent with the 7-year WMAP data, Ωh2 = 0.1123± 0.0035.

including the Sommerfeld enhancement a pure Wino is found to have Ωh2 = 0.11 for a mass

of about 2.8 TeV. Much milder changes place in the Higgsino-like region; the relic density is

practically unchanged when considering models in the cosmologically interesting band. The

relic density decrease is even larger in the ultra-heavy regime, with the Sommerfeld effect

becoming larger and larger as the gauge boson masses are becoming less important; this

regime would however be consistent with cosmology only invoking some extra ingredient,

such as, e.g., a dilution effect via late entropy production or the decay of the neutralino

into a lighter state, such as a gravitino or an axino, which is the true LSP (although

viable, both scenario require large fine-tuning). The results found here for pure Winos

and pure Higgsino are analogous to those of earlier works in ref. [11] and ref. [12] in the

same limiting cases; there are small quantitative differences stemming from the fact that

we have identified more annihilation channels that need to be treated separately, with the

Sommerfeld factor depending on the initial spin state of the annihilating particle pair, we

have found a different coefficient in the axial vector exchange, i.e. that the axial vector

has an additional −3 factor with respect to the vector (in agreement with the result in

ref. [45], and we have probably a better control of the numerical solution of the Boltzmann

eq. having implemented our full treatment in the DarkSUSY numerical package (the slight

difference in numerical results between [11] and [12] are instead probably mainly due to

the thermal corrections implemented here following [12]).

Another region showing interesting results is the band connecting the pure Higgsino

to the pure Wino limit, towards M2 ∼ µ but still with a predominant Wino component.

Features in this region are more clearly seen in figure 5 where we show the ratio between the

relic density computed with tree-level amplitudes to the one with the full non-perturbative

treatment. A thin “resonance” slice appears in the plane, starting for pure Winos with mass

mχ0 ≈ 2.5 TeV and extending to heavier masses into the region with a sizable Higgsino

fraction, where the thermal relic density becomes consistent with observations. The value
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Figure 5. Left panel : ratio of relic densities without and with Sommerfeld effect, (Ωh2)0/(Ωh
2)SE.

Right panel : the same ratio but focussing on the inner part of the resonant region. The colour scale

is linear.

of the mass we find for a pure Wino is precisely the one saturating eq. (2.5), i.e.:

1

mW
≈ 1

αmχ0

, (6.1)

with α as computed in the vertex for pure Winos W̃ 0 W̃+W−. This means that the ob-

served resonance is due to the possibility of creating the loosely bound state, occurring

when the Bohr radius coincides with the interaction range. It also explains why, when

we increase the Higgsino fraction, the resonance deviates to higher masses: a larger Hig-

gsino fraction implies an increase in the mass splitting between lightest neutralino and

chargino (since one goes from a mass splitting dominated by the radiative corrections,

about 170 MeV, to the one induced by the mixing of interaction eigenstates), as well as a

drop in the couplings (since the vertex H̃0 H̃+W− as a coupling which is a factor of
√

2

smaller than for Winos) and hence a drop in α; this has to be compensated by a larger mχ0.

6.3 Kinetic decoupling

The results we presented in previous subsections assume that the temperature of the neu-

tralinos traces the thermal bath temperature. This is true as long as neutralinos are in

kinetic equilibrium. After kinetic decoupling, at the temperature Tkd, their temperature

decreases with the scaling as appropriate for non-relativistic particles, i.e. Tχ ∼ 1/a2,

where a is the Universe scale factor, cooling much faster than thermal bath states for

which T ∼ 1/a. This does not have any influence on the relic density computation if inter-

actions do not depend on velocity, as in the standard case of s-wave annihilations. When

the Sommerfeld effect plays a major role, however, there is indeed a strong dependence

on velocity and colder neutralino may have larger annihilation cross section. Hence, if the

kinetic decoupling happened early enough, i.e. when the depletion term in the Boltzmann

equation is still active, this might have given rise to stronger relic density suppression by

the Sommerfeld enhancement.
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Figure 6. Influence of the kinetic decoupling on the relic density suppression by the Sommerfeld

effect for Wino-like neutralinos. In all cases µ = 5TeV and other parameters are as before. For

a pure W̃ 0 case the kinetic decoupling occurs at about Tkd ≈ 170MeV, as explained in the text.

There is a clear enhancement in the net effect within the resonance region, but no effect away

from it.

We have just shown that, within the MSSM, the largest impact of the Sommerfeld

effect occurs for Wino-like neutralino. In this case, since elastic scatterings are very strongly

suppressed, the processes enforcing kinetic equilibrium are inelastic scatterings of the type

χ0
1e

− ↔ χ−νe; the latter are efficient up to the time when the temperature drops down

below the mass splitting between neutralino and chargino. Hence, we can estimate that

the kinetic decoupling for Winos occurs at about Tkd ≈ 170 MeV. The exact value of

Tkd and shape of the distribution function after decoupling (since it’s unlikely for the

decoupling to be instantaneous) depend on the parameters in the model; it is in general

rather involved to determine them (see e.g. [46, 47]) and this goes beyond the purpose of this

paper. Here, to illustrate the possible effect of the kinetic decoupling on the relic density

when the Sommerfeld enhancement is relevant, in figure 6 we plot the ratio between the

value of the relic density as computed at the lowest order in perturbation theory (Ωh2)0
and the full computation (Ωh2)SE, for a few points in the parameter space with Wino-

like neutralinos, as a function of the value assumed for Tkd and assuming the neutralino

distribution function as if decoupling is instantaneous. One can see that in general, the

relic density is not sensitive to the kinetic decoupling temperature; the exception is the

resonance case, when the Sommerfeld enhancement can be much larger and we find a sizable

corrections depending on Tkd. It follows that accurate predictions of the relic abundance in

the resonance regime are possible only after determining the kinetic decoupling temperature

with a certain accuracy. On the other hand the resonance region is rather tiny and the

overall MSSM picture discussed in this work is not much affected.
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7 Conclusions

In this paper we have computed the Sommerfeld effect in neutralino and chargino pair

annihilations within the MSSM, and discussed its relevance for the thermal relic density

of the lightest neutralino. For this purpose, we have adopted and extended the general

approach presented in [26] to obtain a reliable method of computing the Sommerfeld factors

in a case of multi-state systems of fermions with interactions mediated by scalar, vector

and axial vector bosons.

The same method is readily extendable to other models independently of the num-

ber of states and interactions that are present; e.g. one could use this same approach

within next-to minimal SUSY models (NMSSM), where in some cases a large Sommer-

feld effect may be expected due to presence of an additional chiral superfield coupled to

Higgs fields. Moreover, the results presented in this analysis are already readily readable

for more general models than the MSSM: the ingredients we have implemented are only:

i) the existence of massive fermions in the adjoint representation of SU(2)L (we have been

calling them Winos); ii) the presence of massive left-handed fermions in the fundamental

of SU(2)L (without further right-handed ones), which form two doublets with hypercharge

assignments such that a SU(2)L gauge invariant mass is possible (like the µ-term; we have

been calling these Higgsinos); iii) they form the dark matter and that their SU(2)L gauge

invariant masses are in the range of TeV; iv) there are SU(2)L breaking corrections to

the mass matrix in the off-diagonal terms in the range of the EW breaking scale, or also

in the diagonal terms with a scale comparable to the effect of the off-diagonal ones, such

that the resulting masses receive a correction of the order of O(10−2) with respect to their

SU(2)L invariant masses (these determine the mixing among neutral and among charged

states; we have been referring to the mass eigenstates from the superposition of interaction

eigenstates as, respectively, neutralinos and charginos). Regarding the last ingredient, we

have been computing mass matrices and radiative corrections under the standard MSSM

assumptions but this should be just taken as a specific parameter fixing in a more generic

model which can be readily generalized.

For our sample numerical study, we have concentrated on neutralino dark matter in the

MSSM, being one of the best motivated and most extensively studied scenarios. Since the

Sommerfeld effect is relevant only for non-trivial representations of SU(2)L we have assumed

that the Bino is much heavier and considered only the case of Wino-Higgsino mixing; also

since in this limit sfermions play a marginal role, we have restricted the analysis to a

split SUSY scenario, making the hypothesis that all scalars except for the SM-like Higgs

are heavy. The computation of the relic density is based on a numerical solution of the

system of coupled Schrödinger equations which allows to compute Sommerfeld factors in

all (co-)annihilation channels and then on their implementation in the DarkSUSY package

for a full numerical solution of the Boltzmann equation. This enables us to determine the

thermal relic density with a very good accuracy, possibly at the few per cent level, in all

the parameter space, except for a small region in which a resonance is found because the

Bohr radius becomes of the same order as the interaction range and for which a careful

computation of the kinetic decoupling process would be needed.
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The results we have found show that the Sommerfeld effect can suppress the relic

density of the neutralino by as much as a factor of 2-3 in sizable regions of parameter space

and even much more in the resonance (the largest suppression factor found in our scan was

about 6.2). If the LSP is mostly Wino this results in the shift of the neutralino mass being

compatible with WMAP from about 2.2 TeV to about 2.8 TeV, also enlarging slightly the

region allowed under standard assumptions on the cosmological model. The existence of the

resonance has a small, but visible impact on this regime preferred by cosmology, however

it may be much more important if one does not require the neutralino to constitute the

whole CDM term. Similar features may occur in other regions of the parameter space; we

defer the study of these to future work.

Qualitatively, the results we have found for pure Winos and Higgsinos are analogous

to those in earlier studies of these models, see [11, 12]; quantitatively, they slightly differ.

There are several reasons for that. First of all we were computing the relic density with a full

numerical treatment, properly including co-annihilations and Sommerfeld factors, having

implemented our new treatment into the DarkSUSY package. Secondly, we have revised

the Sommerfeld enhancement computation itself: we have identified more annihilation

channels that need to be treated separately since we have noticed that the enhancement

factor depends on the initial spin state of annihilating particle pair, and we have corrected

one of the couplings. We also included Higgses exchanges and treated separately two

different neutralino states (however, this latter effect is quantitatively not relevant within

our parameter space). Moreover, contrary to previous results, our approach allows us to

treat not only pure states, but the more realistic situation with arbitrary Higgsino-Wino

mixing, with mass spectrum as computed in an arbitrary setup, hence allowing us to explore

the full MSSM parameter space.

As a final remark, we would like to point out that, although the numerical work carried

out in this paper has been concentrated on the impact on the relic density calculation, the

method we developed and the relative numerical routines can be also used to give more

accurate predictions for the pair annihilation rate of neutralinos in dark matter halos

today and hence for indirect dark matter detection signals; we will investigate this further

in future work.
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A Method of computation

The form of the V φ
ij,i′j′(r) for any two-particle states exchanging a boson φ is always of

Yukawa- or Coulomb-type, but due to different couplings and multiplicities we can have

different relative coefficients in front. Here we will summarize the way of computing them.

Those numerical coefficients depend on the fact what type of fermions, Dirac or Majorana,

are present in the diagram and are they distinguishable or not.

In [26] it was shown that the integration on the time component of the loop momentum

of the Feynman graph expression of the Bethe-Salpeter equation for a four-point amplitude

Ψ gives in non-relativistic limit:

Ψ = Vint ∗
1

H0 − EΨ . (A.1)

From this expression, by redefining Ψ ≡ (H0 − E)Φ, we get the Schrödinger equation

H0Φ − Vint ∗ Φ = EΦ . (A.2)

Here Φ is in general a multicomponent state describing many possible pairs of particles

that interact with each other, therefore the equation is just a compact form for a system

of equations, and the symbol ∗ states for an operator acting on spins as well. For each

pair ij:

H ij
0 = − ∇2

2mij
r

+ 2δmij , (A.3)

where mij
r = mimj/(mi + mj) is the reduced mass of the pair and 2δmij = mi + mj −

(ma + mb) where ma and mb are the masses of the incoming particles. E is the kinetic

energy (at infinity) of the incoming pair.

In order to make explicit the action of the interaction Vint on a state, we express both

the interaction and the state in terms of fields and then make the appropriate contractions.

The relativistic Feynman diagram in the non-relativistic limit gives explicitly the result,

but it is simpler to work directly with the form (A.2) by defining suitable non-relativistic

contractions. This way of doing the computation has a virtue of easy bookkeeping of

all multiplicative factors and signs appearing especially in the case involving Majorana

particles. This formalism allows also to include easily the fact that we have initial and

final state with defined total angular momentum and spin.

In the non-relativistic approximation the time delay is neglected and we can work in

the time independent Schrödinger picture.

We introduce the state Φ describing a fermion-antifermion (Dirac or Majorana) pair

expressed as7

|Φij
γ 〉 = Nij

∫

d~zd~w ψ̄i(z)Oγψj(w)|0〉Φij
γ (z,w). (A.4)

For a (Dirac) fermion-fermion pair one needs to take ψ(w) → ψc(w). It is easy to see that

the spin singlet S = 0 and the spin triplet S = 1 are encoded in this formula8:

S = 0 : Oγ ≡ γ5 , S = 1 : Oγ ≡ ~γ · ~S , (A.5)

7In the following we write x, y, z, w for ~x, ~y, ~z, ~w, the time coordinate (not indicated) being the same.
8Here we extend the idea presented in [45] to include also the spin triplet.
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where ~S is the spin of initial pair. The normalization is

Nij = 1/
√

2 i 6= j , (A.6)

Nij = 1/2 i = j .

Take an interaction of the form (as usual by Γ we denote the gamma matrices structure)

Vint = g2
Γ

∫

d~xd~y ψ̄k(x)Γψi(x)ψ̄j(y)Γψl(y)W
φ
kl,ij(x− y), (A.7)

where W φ
kl,ij is the propagator of the boson exchanged between the two vertices. In the

non-relativistic limit only Γ = 1, γ0, γjγ5 can contribute. The transition ij → kl can be

described in terms of operators acting on the initial state giving the final one:

g2
φ

2!

∫

d~xd~y
(

ψ̄k(x)Γψi(x) + ψ̄l(x)Γψj(x) + h.c.
) (

ψ̄k(y)Γψi(y) + ψ̄l(y)Γψj(y) + h.c.
)

W φ
kl,ij(|~x− ~y|) ×

∫

d~zd~wNijψ̄i(z)Oγψj(w)|0〉Φij
γ (z,w) =

=

∫

d~xd~y Nklψ̄k(x)Oγψl(y)|0〉V φ
kl,ij(|~x− ~y|)Φij

γ (x, y). (A.8)

The interaction potential between two 2-particle states (ij → kl) arising due to vector,

axial vector boson or scalar exchange with the mass mφ has the form (see [26] for details

on the normalization)

V φ
kl,ij(r) =

cΓkl,ij

4π

e−mφr

r
. (A.9)

We are interested in computing the coefficients cΓkl,ij(γ) for all possible cases. Note that in

the non-relativistic approximation spin-orbit interactions are suppressed, therefore a spin-

singlet(triplet) initial state gives a a spin-singlet(triplet) final state, and also the parity

of the wave function, that is whether Φ(~r) = ±Φ(−~r) (e.g. + for the s-wave and − for

the p-wave), is the same in the initial and final state. Therefore in general there are

four independent systems of equations: the spin-singlet even, spin-singlet odd, spin-triplet

even, spin-triplet odd. The coefficients cΓkl,ij and therefore the interaction potentials are in

general different in the four cases.

To illustrate the method, consider first a (Dirac) fermion-antifermion pair. We make

the possible contractions:

Vint ∗ |Φij
γ 〉 = g2

∫

xyzw
ψ̄k(x)Γ〈ψi(x)ψ̄i(z)〉Oγ 〈ψj(w)ψ̄j(y)〉Γψl(y)W

φ(x− y)Φij
γ (z,w).

By noting that only the creation operator part of both ψ̄a(z) and ψb(w) appear in the state

ψ̄i(z)Oγψj(w)|0〉, we get for p≪ m:

〈ψi(x)ψ̄i(z)〉 ≡ 〈0|ψi(x)ψ̄i(z)|0〉 =

∫

d~q

2ω(2π)3
ei~p(~x−~z)

∑

s

usūs → δ(~x− ~z)P+ , (A.10)

〈ψl(w)ψ̄l(y)〉 ≡ −〈0|ψ̄l(y)ψl(~w)|0〉T = −
∫

d~q

2ω(2π)3
ei~p(~w−~y)

∑

s

vsv̄s → δ(~y − ~w)P− ,
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where P± = 1±γ0

2 and ω =
√

~q2 +m2. Therefore

Vint ∗ |Φij
γ 〉 = g2

∫

d~xd~y ψ̄k(x)ΓP+OγP−Γψl(y)|0〉W φ
kl,ij(x− y)Φij

γ (x, y).

Note that ψ̄k(x)P+|0〉 = ψ̄k(x)|0〉 and that P−ψl(y)|0〉 = ψl(y)|0〉.

Keeping into account the sign difference between the vector and axial propagator

with respect to scalar one and defining W (~r) = e−mφr/4πr, one can write Wγ0
= −W ,

W1,γjγ5
= +W . Then by Dirac algebra we finally get

Vint ∗ |Φij
γ 〉 = cΓγg

2

∫

d~xd~y ψ̄k(x)Oγψl(y)|0〉W (x − y)Φij
γ (x, y), (A.11)

with

c1γ5
= cγ0

γ5
= c1γi

= cγ0

γi
= 1, c

γjγ5

γ5
= −3, c

γjγ5

γi = 1.

This result gives a term in the equation for Φkl
γ :

Hkl
0 Φkl

γ − cΓkl,ij

e−mΓr

4πr
Φij

γ = EΦkl
γ , (A.12)

where cΓkl,ij = N ij

Nkl c
Γ
γg

2.

The state may contain Majorana fermions χ = χc = Cχ̄T , like

ψ̄(z)Oγχ(w)|0〉Φ(z,w), χ̄(z)Oγψ(w)|0〉Φ(z,w), χ̄i(z)Oγχj(w)|0〉Φ(z,w).

Again Oγ = γ5 for the spin singlet and Oγ = γj for the spin triplet. Since χ̄(z) and

χ(w) contain the creation operator part only, the possible contractions between Majorana

fermions are, in the non-relativistic limit,

〈χ(x)χ̄(z)〉 → δ(~x− ~z)P+ , 〈χ(w)χ̄(y)〉 → δ(~y − ~w)P− , (A.13)

〈χ(x)χ(w)T 〉 = 〈χ(x)χ̄(w)〉CT → −δ(~x− ~w)P+C ,

〈χ̄(y)T χ̄(z)〉 = CT 〈χ(y)χ̄(z)〉 → −δ(~y − ~z)CP+ .

The computations presented above are for the even orbital angular momentum, for instance

l = 0 (s-wave). This means that the 2-body wave function is symmetric. The results for

these coefficients are summarized in table 1. It is very easy to generalize it to higher

partial waves.

These results cover all the possibilities of types of 2-body to 2-body interactions when

we can have Dirac or Majorana states, i.e. every other case present in some model will have

one of those forms (so the coefficient in Schrödinger equation for computing Sommerfeld

enhancement will be the same) with possible different coupling constant.

B Projection of the (co-)annihilation amplitudes into spin singlet and

spin triplet initial states

Since the Sommerfeld effect is in general different for the spin singlet and triplet configu-

rations, it will affect separately the annihilation rates for those two cases. Therefore, we

need to compute the relative weight of the two cases.
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Oγ

Figure 7. Diagram with explicit contraction of the initial spinors by Oγ . The blob represents

every possible annihilation process with all possible 2-body final states — fermionic or bosonic.

We consider the annihilation of two fermionic dark matter particles into two bosonic

or fermionic standard model particles. In our approximation we take the initial state to

be at rest, and we neglect the dark matter mass differences and the masses of the particles

resulting from the annihilation. Hence the kinematics of the annihilation process simplifies;

by calling pµ, p
′
µ the momenta of the incoming dark matter particles and kµ, k

′
µ the momenta

of the annihilation products we get in the CM frame9:

pµ ∼ (m,~0) , p′µ ∼ (m,~0) , kµ ∼ (m,m~n) , k′µ ∼ (m,−m~n) , ~n2 = 1 . (B.1)

The propagators of the virtual particles exchanged in the Feynman diagrams representing

the amplitude will have denominators of the kind:

t−m2 ∼ −2m2 , u−m2 ∼ −2m2 , s− µ2 ∼ 4m2 , (B.2)

where t ≡ (p − k)2 ∼ −m2, u ≡ (p − k′)2 ∼ −m2, s ≡ (p + p′)2 ∼ 4m2, and m is the

appropriate mass of the particle mediating the annihilation.

With these simplifications one can decompose the rate to two factors, i.e. rate ∝ K×Φ,

where K is the amplitude squared summed over the final spin configurations and averaged

over the initial one, and Φ is the phase space.

The phase space factor, apart from common factors, reads

Φ =

[

(

1 +
m2

1

E2
cm

− m2
2

E2
cm

)2

− 4
m2

1

E2
cm

]1/2

, (B.3)

where m1 and m2 are masses of final particles and E2
cm is the energy in the CM frame.

The relative weights for singlet (triplet) will be computed by the ratio

Q(S = 0, 1)

Q(S = 0) +Q(S = 1)
,

where Q(S = 0, 1) is the sum of the singlet (triplet) squared amplitudes for the various

annihilation channels:

Q(S = 0, 1) =
∑

j

Qchannel j(S = 0, 1).

9It can be done without this simplification but in the case of interest it does not play any role, especially

that we are interested only in the relative weights and so by doing this approximation we do not change

the value of perturbative annihilation cross section.
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In conclusion, in our approximation, the Sommerfeld enhanced total (i.e. summed over ev-

ery channel) annihilation cross section σenh is related to the non-enhanced total annihilation

cross section σ0 by the formula

σenh =

[

Q(S = 0)

Q(S = 0) +Q(S = 1)
S(S = 0) +

Q(S = 1)

Q(S = 0) +Q(S = 1)
S(S = 1)

]

σ0 , (B.4)

where S(S = 0, 1) are the Sommerfeld enhancement factors, proportional to the square

modulus of the non-relativistic wave function at the origin, for the spin singlet and triplet.

The computation of the weights follows closely the method previously seen. We com-

pute the standard tree-level amplitude of annihilation to given final state but with initial

spinors contracted by Oγ , as presented with a diagram on a figure 7. In a non-relativistic

limit this gives precisely amplitudes Q(S = 0) for γ5 and Q(S = 1) for ~γ · ~S. From that

point the computations proceed in a standard way.
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