6 research outputs found

    Towards molecular electronic devices based on 'all-carbon' wires

    Get PDF
    Nascent molecular electronic devices based on linear ‘all-carbon’ wires attached to gold electrodes through robust and reliable C–Au contacts are prepared via efficient in situ sequential cleavage of trimethylsilyl end groups from an oligoyne, Me3Si–(C[triple bond, length as m-dash]C)4–SiMe3 (1). In the first stage of the fabrication process, removal of one trimethylsilyl (TMS) group in the presence of a gold substrate, which ultimately serves as the bottom electrode, using a stoichiometric fluoride-driven process gives a highly-ordered monolayer, Au|C[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CSiMe3 (Au|C8SiMe3). In the second stage, treatment of Au|C8SiMe3 with excess fluoride results in removal of the remaining TMS protecting group to give a modified monolayer Au|C[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CH (Au|C8H). The reactive terminal C[triple bond, length as m-dash]C–H moiety in Au|C8H can be modified by ‘click’ reactions with (azidomethyl)ferrocene (N3CH2Fc) to introduce a redox probe, to give Au|C6C2N3HCH2Fc. Alternatively, incubation of the modified gold substrate supported monolayer Au|C8H in a solution of gold nanoparticles (GNPs), results in covalent attachment of GNPs on top of the film via a second alkynyl carbon–Au σ-bond, to give structures Au|C8|GNP in which the monolayer of linear, ‘all-carbon’ C8 chains is sandwiched between two macroscopic gold contacts. The covalent carbon–surface bond as well as the covalent attachment of the metal particles to the monolayer by cleavage of the alkyne C–H bond is confirmed by surface-enhanced Raman scattering (SERS). The integrity of the carbon chain in both Au|C6C2N3HCH2Fc systems and after formation of the gold top-contact electrode in Au|C8|GNP is demonstrated through electrochemical methods. The electrical properties of these nascent metal–monolayer–metal devices Au|C8|GNP featuring ‘all-carbon’ molecular wires were characterised by sigmoidal I–V curves, indicative of well-behaved junctions free of short circuits

    Nanoscale engineering omniphobic surfaces

    No full text
    Capítuldo 5 confidencial pendiente de patente. Tesis completa 159 p. Tesis censurada 143[ES]Las superficies expuestas al ambiente presentan una gran tendencia a atraer suciedad. Teniendo en cuenta que son éstas las que definen la mayor parte de las propiedades de los materiales, tanto la presencia como la acumulación de suciedad suponen un impacto negativo en numerosas aplicaciones ya que pueden generar importantes riesgos para la seguridad y la salud, así como, afectar negativamente al rendimiento, requiriendo costosas operaciones de mantenimiento. En los últimos años, la industria ha mostrado un gran interés en el desarrollo de soluciones capaces de preservar limpias las superficies. Tradicionalmente, las superficies repelentes se han obtenido mediante el efecto de la superhidrofobicidad. Sin embargo, su ineficacia para repeler líquidos de baja energía superficial y la fragilidad de ciertas micro/nanoestructuras necesarias pueden limitar su aplicación. En este contexto, el desarrollo de recubrimientos omnifóbicos de baja adhesión puede aportar numerosos beneficios en distintas aplicaciones de sectores muy diversos. Esta tesis persigue desarrollar nuevas estrategias para la obtención de superficies repelentes, focalizando el trabajo en alcanzar soluciones robustas con buenas prestaciones de durabilidad que sean capaces de responder a varias fuentes de contaminación simultáneamente. Para ello, el potencial que ofrece la nanotecnología se utiliza desde dos aproximaciones diferentes: a través de la estructuración superficial ymediante la incorporación de nanoobjetos como vectores para introducir nuevas funcionalidades, siendo el objetivo final desarrollar superficies omnifóbicas con propiedades diseñadas a medida que den respuesta a las necesidades de la industria

    Nanoscale engineering omniphobic surfaces

    No full text
    Capítuldo 5 confidencial pendiente de patente. Tesis completa 159 p. Tesis censurada 143[ES]Las superficies expuestas al ambiente presentan una gran tendencia a atraer suciedad. Teniendo en cuenta que son éstas las que definen la mayor parte de las propiedades de los materiales, tanto la presencia como la acumulación de suciedad suponen un impacto negativo en numerosas aplicaciones ya que pueden generar importantes riesgos para la seguridad y la salud, así como, afectar negativamente al rendimiento, requiriendo costosas operaciones de mantenimiento. En los últimos años, la industria ha mostrado un gran interés en el desarrollo de soluciones capaces de preservar limpias las superficies. Tradicionalmente, las superficies repelentes se han obtenido mediante el efecto de la superhidrofobicidad. Sin embargo, su ineficacia para repeler líquidos de baja energía superficial y la fragilidad de ciertas micro/nanoestructuras necesarias pueden limitar su aplicación. En este contexto, el desarrollo de recubrimientos omnifóbicos de baja adhesión puede aportar numerosos beneficios en distintas aplicaciones de sectores muy diversos. Esta tesis persigue desarrollar nuevas estrategias para la obtención de superficies repelentes, focalizando el trabajo en alcanzar soluciones robustas con buenas prestaciones de durabilidad que sean capaces de responder a varias fuentes de contaminación simultáneamente. Para ello, el potencial que ofrece la nanotecnología se utiliza desde dos aproximaciones diferentes: a través de la estructuración superficial ymediante la incorporación de nanoobjetos como vectores para introducir nuevas funcionalidades, siendo el objetivo final desarrollar superficies omnifóbicas con propiedades diseñadas a medida que den respuesta a las necesidades de la industria

    Laponite-Based Surfaces with Holistic Self-Cleaning Functionality by Combining Antistatics and Omniphobicity

    No full text
    In the present work, perfluoroalkylated laponite nanoparticles with a high degree of functionalization (60 wt %) have been prepared and a methodology to prepare transparent, antistatic, and omniphobic laponite-based films with holistic self-cleaning properties against liquids, solids and liquid–solid mixtures has been developed. The intrinsic electrical and ionic conductivities observed in unmodified laponite coatings are combined with perfluoroalkyl-modified laponite clays. As a result, films with improved self-cleaning functionality based on dust-repellency and omniphobic liquid-repellence (sheet resistance in the range of 10<sup>7</sup> Ω/□ and contact angles of 106° (H<sub>2</sub>O) and 93° (oil)) were obtained. These unique films, being capable to repel dust and liquids, were applied to a variety of substrates (i.e., glass and plastics) and tested against solids and liquids of different nature with excellent performance. Bending tests of these holistic self-cleaning films deposited over flexible substrates showed better mechanical performance than unmodified laponite films
    corecore