7 research outputs found

    Atp2c2 Is Transcribed From a Unique Transcriptional Start Site in Mouse Pancreatic Acinar Cells

    Get PDF
    Proper regulation of cytosolic Ca2+ is critical for pancreatic acinar cell function. Disruptions in normal Ca2+ concentrations affect numerous cellular functions and are associated with pancreatitis. Membrane pumps and channels regulate cytosolic Ca2+ homeostasis by promoting rapid Ca2+ movement. Determining how expression of Ca2+ modulators is regulated and the cellular alterations that occur upon changes in expression can provide insight into initiating events of pancreatitis. The goal of this study was to delineate the gene structure and regulation of a novel pancreas-specific isoform for Secretory Pathway Ca2+ ATPase 2 (termed SPCA2C), which is encoded from the Atp2c2 gene. Using Next Generation Sequencing of RNA (RNA-seq), chromatin immunoprecipitation for epigenetic modifications and promoter-reporter assays, a novel transcriptional start site was identified that promotes expression of a transcript containing the last four exons of the Atp2c2 gene (Atp2c2c). This region was enriched for epigenetic marks and pancreatic transcription factors that promote gene activation. Promoter activity for regions upstream of the ATG codon in Atp2c2’s 24th exon was observed in vitro but not in in vivo. Translation from this ATG encodes a protein aligned with the carboxy terminal of SPCA2. Functional analysis in HEK 293A cells indicates a unique role for SPCA2C in increasing cytosolic Ca2+. RNA analysis indicates that the decreased Atp2c2c expression observed early in experimental pancreatitis reflects a global molecular response of acinar cells to reduce cytosolic Ca2+ levels. Combined, these results suggest SPCA2C affects Ca2+ homeostasis in pancreatic acinar cells in a unique fashion relative to other Ca2+ ATPases. J. Cell. Physiol. 231: 2768–2778, 2016. © 2016 Wiley Periodicals, Inc

    Genetic associations with micronutrient levels identified in immune and gastrointestinal networks

    Get PDF
    The discovery of vitamins and clarification of their role in preventing frank essential nutrient deficiencies occurred in the early 1900s. Much vitamin research has understandably focused on public health and the effects of single nutrients to alleviate acute conditions. The physio- logical processes for maintaining health, however, are complex systems that depend upon interactions between multiple nutrients, environmental factors, and genetic makeup. To analyze the relationship between these factors and nutritional health, data were obtained from an observational, community-based participatory research program of children and teens (age 6–14) enrolled in a summer day camp in the Delta region of Arkansas. Assessments of erythrocyte S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), plasma homocysteine (Hcy) and 6 organic micronutrients (retinol, 25-hydroxy vitamin D3, pyridoxal, thiamin, riboflavin, and vitamin E), and 1,129 plasma proteins were performed at 3 time points in each of 2 years. Genetic makeup was analyzed with 1 M SNP genotyping arrays, and nutrient status was assessed with 24-h dietary intake questionnaires. A pattern of metabolites (met_PC1) that included the ratio of erythro- cyte SAM/SAH, Hcy, and 5 vitamins were identified by principal component analysis. Met_PC1 levels were sig- nificantly associated with (1) single-nucleotide polymor- phisms, (2) levels of plasma proteins, and (3) multilocus genotypes coding for gastrointestinal and immune func- tions, as identified in a global network of metabolic/pro- tein–protein interactions. Subsequent mining of data from curated pathway, network, and genome-wide association studies identified genetic and functional relationships that may be explained by gene–nutrient interactions. The sys- tems nutrition strategy described here has thus associated a multivariate metabolite pattern in blood with genes involved in immune and gastrointestinal functions

    Neoadjuvant Cemiplimab for Stage II to IV Cutaneous Squamous-Cell Carcinoma

    No full text
    BACKGROUND: In a pilot study involving patients with cutaneous squamous-cell carcinoma, a high percentage of patients had a pathological complete response with the use of two doses of neoadjuvant cemiplimab before surgery. Data from a phase 2 study are needed to confirm these findings. METHODS: We conducted a phase 2, confirmatory, multicenter, nonrandomized study to evaluate cemiplimab as neoadjuvant therapy in patients with resectable stage II, III, or IV (M0) cutaneous squamous-cell carcinoma. Patients received cemiplimab, administered at a dose of 350 mg every 3 weeks for up to four doses, before undergoing surgery with curative intent. The primary end point was a pathological complete response (the absence of viable tumor cells in the surgical specimen) on independent review at a central laboratory, with a null hypothesis that a pathological complete response would be observed in 25% of patients. Key secondary end points included a pathological major response (the presence of viable tumor cells that constitute ≤10% of the surgical specimen) on independent review, a pathological complete response and a pathological major response on investigator assessment at a local laboratory, an objective response on imaging, and adverse events. RESULTS: A total of 79 patients were enrolled and received neoadjuvant cemiplimab. On independent review, a pathological complete response was observed in 40 patients (51%; 95% confidence interval [CI], 39 to 62) and a pathological major response in 10 patients (13%; 95% CI, 6 to 22). These results were consistent with the pathological responses determined on investigator assessment. An objective response on imaging was observed in 54 patients (68%; 95% CI, 57 to 78). Adverse events of any grade that occurred during the study period, regardless of whether they were attributed to the study treatment, were observed in 69 patients (87%). Grade 3 or higher adverse events that occurred during the study period were observed in 14 patients (18%). CONCLUSIONS: Neoadjuvant therapy with cemiplimab was associated with a pathological complete response in a high percentage of patients with resectable cutaneous squamous-cell carcinoma. (Funded by Regeneron Pharmaceuticals and Sanofi; ClinicalTrials.gov number, NCT04154943.)

    Consensus statement understanding health and malnutrition through a systems approach:the ENOUGH program for early life

    Get PDF
    Nutrition research, like most biomedical disciplines, adopted and often uses experimental approaches based on Beadle and Tatum's one gene-one polypeptide hypothesis, thereby reducing biological processes to single reactions or pathways. Systems thinking is needed to understand the complexity of health and disease processes requiring measurements of physiological processes, as well as environmental and social factors, which may alter the expression of genetic information. Analysis of physiological processes with omics technologies to assess systems' responses has only become available over the past decade and remains costly. Studies of environmental and social conditions known to alter health are often not connected to biomedical research. While these facts are widely accepted, developing and conducting comprehensive research programs for health are often beyond financial and human resources of single research groups. We propose a new research program on essential nutrients for optimal underpinning of growth and health (ENOUGH) that will use systems approaches with more comprehensive measurements and biostatistical analysis of the many biological and environmental factors that influence undernutrition. Creating a knowledge base for nutrition and health is a necessary first step toward developing solutions targeted to different populations in diverse social and physical environments for the two billion undernourished people in developed and developing economies
    corecore