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Abstract The discovery of vitamins and clarification of

their role in preventing frank essential nutrient deficiencies

occurred in the early 1900s. Much vitamin research has

understandably focused on public health and the effects of

single nutrients to alleviate acute conditions. The physio-

logical processes for maintaining health, however, are

complex systems that depend upon interactions between

multiple nutrients, environmental factors, and genetic

makeup. To analyze the relationship between these factors

and nutritional health, data were obtained from an

observational, community-based participatory research

program of children and teens (age 6–14) enrolled in a

summer day camp in the Delta region of Arkansas.

Assessments of erythrocyte S-adenosylmethionine (SAM)

and S-adenosylhomocysteine (SAH), plasma homocysteine

(Hcy) and 6 organic micronutrients (retinol, 25-hydroxy

vitamin D3, pyridoxal, thiamin, riboflavin, and vitamin E),

and 1,129 plasma proteins were performed at 3 time points

in each of 2 years. Genetic makeup was analyzed with 1 M

SNP genotyping arrays, and nutrient status was assessed

with 24-h dietary intake questionnaires. A pattern of

metabolites (met_PC1) that included the ratio of erythro-

cyte SAM/SAH, Hcy, and 5 vitamins were identified by

principal component analysis. Met_PC1 levels were sig-

nificantly associated with (1) single-nucleotide polymor-

phisms, (2) levels of plasma proteins, and (3) multilocus

genotypes coding for gastrointestinal and immune func-

tions, as identified in a global network of metabolic/pro-

tein–protein interactions. Subsequent mining of data from

curated pathway, network, and genome-wide association

studies identified genetic and functional relationships that
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may be explained by gene–nutrient interactions. The sys-

tems nutrition strategy described here has thus associated a

multivariate metabolite pattern in blood with genes

involved in immune and gastrointestinal functions.

Keywords Systems nutrition � Community-based

participatory research � Genetic analysis � Network analysis

Introduction

Phenotypic differences between individuals result from

heterogeneous genetic makeups sharing the same envi-

ronment and between genetically similar individuals

exposed to different environments. For example, the inci-

dences of obesity and related metabolic disorders among

ancestral groups sharing the same environment differ

(Ramos and Rotimi 2009; Bustamante et al. 2011) while

Pima Indians have different incidences of obesity in

Mexico versus the United States (Schulz et al. 2006). A

large number of studies have identified gene–environment

interactions based on single-nucleotide polymorphisms

(SNPs) and nutrient intake (Fenech et al. 2011; Lee et al.

2011; Ordovás et al. 2011), and recent genome-wide

association studies (GWAS) have identified SNPs associ-

ated with dietary preference (Hamza et al. 2011; Tanaka

et al. 2013). These gene–nutrient association studies and

GWAS identified individual SNPs that explain only a small

fraction of the phenotype (i.e., small effect size) (Goldstein

2009). The focus on individual SNPs, copy number vari-

ations (CNVs), or other single genomic structural varia-

tions (e.g., insertion/deletions or INDELS) is based

implicitly on the one gene–one enzyme hypothesis of

Beadle and Tatum (Beadle and Tatum 1941). Their

experimental paradigm revolutionized biomedical research

by demonstrating that a mutation in a single gene could

eliminate enzyme activity and produce a change in phe-

notype. However, they described biological processes more

holistically in the introduction of that landmark paper:

‘‘…Since the components of such a [sic] system are

likely to be interrelated in complex ways, and since

the synthesis of the parts of individual genes are

presumably dependent on the functioning of other

genes, it would appear that there must exist orders of

directness of gene control ranging from simple one-

to-one relations to relations of great complexity’’

(Beadle and Tatum 1941). (Emphasis added)

Systems thinking and methodologies hold greater promise

in understanding the complex phenotypes of chronic

disease or response to nutrients in foods than the focus

on individual genetic variants or the identification of

independent environmental factors (Patel et al. 2010,

2012a, b) that influence biological processes. An increasing

number of reports employ systems designs and analysis of

high-dimensional data from studies of obesity, cardiovas-

cular, nutrition, diabetes, drug, toxicology, immunology,

gut microbiota, medicine, health care, and health dispar-

ities (Slikker et al. 2007; Auffray et al. 2009; Gardy et al.

2009; Kalupahana and Moustaid-moussa 2011; Kleemann

et al. 2011; Roux 2011; Karlsson et al. 2011; Afacan et al.

2012; Meng et al. 2013).

With the exception of several publications that include

dietary intake variables as a part of omics-based systems

(Morine et al. 2010, 2011, 2012) or genomic analysis

(Nettleton et al. 2010), many systems studies have

implicitly analyzed biological processes as closed systems

since environmental variables were not included in the

analysis. Biological processes occur in open systems (Von

Bertalanffy 1950), and ex vivo factors, which include

nutrients and other naturally occurring chemicals in food,

can alter biochemical processes and signaling networks

occurring within the organism (Kaput and Rodriguez

2004). Excluding external factors that influence internal

biological processes generates an incomplete system at

best, likely an inaccurate understanding of the interactions

between environment and genetic makeup, and from a

practical standpoint, misses an opportunity to identify

modifiable factors that influence health.

This report details the design and conduct of a discov-

ery-based pilot study that accounts for (1) the known

genetic uniqueness of individual humans (Olson 2012), (2)

the intra-individual variability in homeostatic measure-

ments (Williams 1956; Illig et al. 2010; Suhre et al. 2011),

and (3) the challenge of characterizing complex pheno-

types resulting from small contributions of many genetic

and environmental factors (Goldstein 2009). The partici-

pants in the Delta Vitamin Obesity intervention study were

children and teens (age 6–14) enrolled in a summer day

camp that was a component of a community-based par-

ticipatory research (CBPR) program. CBPR is a form of

translational research that engages the participant, mem-

bers of the community, and scientists in research, educa-

tion, and health-promoting activities for improving

personal and public health (McCabe-Sellers et al. 2008). A

detailed description of the intervention and results obtained

by aggregating data from individuals for population-level
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analysis such as metabolite and protein variation in relation

to BMI, sex, and age has been reported (Monteiro et al.

2014).

In this report, analysis of the data from the Delta Vita-

min Obesity (Monteiro et al. 2014) is extended to further

characterize metabolite–metabolite interactions with dis-

covery-based methods that identify systems-wide rela-

tionships between metabolites, proteins, nutrient intakes,

and genetic makeup. Principal component analysis (PCA)

was used to analyze plasma homocysteine (Hcy); vitamins

A, D, E; riboflavin; thiamine; pyridoxal; and erythrocyte S-

adenosylmethionine and S-adenosylhomocysteine (SAH)

metabolites. A quantitative variable (met_PC1) from the

PCA was defined and used for discovering metabolite–

protein correlations as well as thousands of genotypes

associated with met_PC1 values. Two recent studies have

used inferences based on heritability and Bayesian

approaches to identify thousands of SNPs associated with

height and weight (Hemani et al. 2013) and rheumatoid

arthritis (Stahl et al. 2012) to demonstrate that complex

phenotypes are the result of thousands of SNPs. Subsequent

data mining methods associated genes and proteins iden-

tified in this report to biological functional classes includ-

ing predominantly immune and gastrointestinal function.

Finally, the challenges of conducting case–control studies

in light of genetic and cultural differences within and

between populations are discussed.

Materials and methods

Participants and CBPR methods

A description of the summer day camp in the Marvell,

AR (USA) school district, 24-h dietary intakes, body

weight and height, blood sampling and processing, and

proteomic and genomic analysis are provided in

(Monteiro et al. 2014). In brief, assessments were con-

ducted before the beginning of the camp (baseline), at

the end of 5 weeks of the camp (end of camp), and

1 month after camp ended (post-camp). Metabolite and

dietary intake data were averaged across the three

assessments for the analysis in this study. Thirty-six

participants were recruited in year 1, and 19 completed

all three assessments. In the second year, 72 participants

enrolled and 42 completed three assessments. None of

the children or adolescents (age 6–14) was taking pre-

scribed medicines, nor did they have overt malnutrition,

active infection, or known genetic disease that could

alter metabolism. All participants were healthy African

American children and adolescents. Results for the three

assessments are reported. The biomedical research pro-

tocol was approved by the FDA’s Research Involving

Human Subjects Committee (RIHSC) and the University

of Arkansas for Medical Sciences (UAMS) Institutional

Review Board (IRB).

HCY

Total Hcy was analyzed in plasma using a Hcy HPLC Kit

(ALPCO Immunoassays, Salem, NH) and a UPLC Waters

Acquity HSS T3 column (2.1 9 50 mm, 1.8 lm) coupled

with an Acquity HSS T3 1.8 lm VanGuard pre-column at

40 �C.

Lipid-soluble vitamins

Vitamins were determined using LC/MS/MS (NCTR-FDA-

USA): 250 lL of plasma, in a 1.5-mL Eppendorf micro-

centrifuge tube, was spiked with stable isotope-labeled

standards and mixed with 740 lL of MeOH. Samples were

held at 4 �C for 30 min. About 500 lL of hexane was

added, and samples were centrifuged at 13,0009g for

12 min (4 �C). The (top) hexane layer was transferred into

a total recovery autosampler vial, and the sample was

subsequently extracted with two additional 500 lL hexane

portions, each time transferring the hexane layer into the

autosampler vial. The combined hexane extracts were

placed under a stream of nitrogen gas, dried, and recon-

stituted in 50 lL of 50:50 MeOH/ACN. Ten microlitre

sample was injected on an Acquity UPLC equipped with a

2.1 mm 9 50 mm (1.7 lm particle) BEH C18 column

held at 35 �C. The mobile phase A was 90:10 water/ACN,

and the mobile phase B was 50:50 MeOH/can with a flow

rate of 0.5 mL/min. Metabolites were analyzed on a Xevo

TQ operated in positive APCI ionization mode using the

following parameters: source temperature was 145 �C,

corona was 15 uA, probe temperature was 575 �C, and

desolvation gas flow rate was 600 L/h. Multiple reaction

monitoring (MRM) was optimized by direct infusion of

standards. The transitions monitored for vitamin A were

m/z 269 ? 109 (cone E = 35 V, collision E = 15 V) and

m/z 269 ? 93 (cone E = 26 V, collision E = 14 V). The

transition monitored for vitamin E was m/z 431 ? 165 and

for (d3) vitamin E was m/z 434 ? 165 (cone E = 35 V,

collision E = 15 V). The transition monitored for

25-hydroxy vitamin D3 was m/z 401 ? 159 and

m/z 407 ? 159 for the (d6) 25 hydroxy vitamin D3 with

cone and collision energies of 24 and 28 V, respectively.

Water-soluble vitamins

About 250 lL of plasma was mixed with 1 mL of (4 �C)

acetonitrile in a 1.5-mL Eppendorf microcentrifuge tube.

The sample was vortexed briefly and then centrifuged at

13,0009g for 10 min at 4 �C. The supernatant was
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transferred to a total recovery autosampler vial, and the

solvent was evaporated. Samples were reconstituted in

250 lL of water (Optima grade), and 10 lL of sample was

injected onto an Acquity UPLC equipped with an HHS T3

2.1 9 100 mm, (1.8 lm particle) UPLC column. Mass

spectrometric detection was performed on a Xevo TQ

(Waters) operated in ESI positive mode using the following

parameters: source temperature was 150 �C, capillary

voltage (kV) was 2.2, desolvation temperature was 400 �C,

and desolvation gas flow rate was 800 L/h. MRMs for

target analytes were optimized by direct infusion of stan-

dards. The transition monitored for pyridoxal was

m/z 168 ? 94 (cone E = 16 V, collision E = 22 V), for

pyridoxine m/z 170 ? 134 (cone E = 22 V, collision

E = 22 V), for thiamine m/z 265 ? 122 (cone E = 20 V,

collision E = 12 V), for riboflavin m/z 377 ? 243 (cone

E = 40 V, collision E = 22 V), and for folic acid

m/z 442 ? 295 (cone E = 22 V, collision E = 12 V).

Red blood cell S-adenosyl-L-methionine (SAM) and S-

adenosyl-L-homocysteine (SAH)

Red blood cell samples stored at -70 �C were randomly

assayed in batches of 20. About 600 lL of red blood

cells was added to tubes containing 150 lL of ice-cold

trichloroacetic acid (40 % w/v), plus 330 lL 0.1 M

sodium acetate trihydrate, and then vortexed. Samples

were incubated at 4 �C for 30 min, followed by centri-

fugation at 15,000 rpm for 15 min. About 150 lL of

supernatant was filtered using a 0.22-lm filter, spun at

5,000 rpm for 5 min, and transferred to vials for chro-

matographic analysis of SAM. The remainder of the

supernatant was transferred to a clean tube for ether

extraction. Samples were extracted twice with 300 lL,

and any remaining ether was evaporated under argon

before filtration and transferred to UPLC vials for the

analysis of SAH. Standards for SAM and SAH were

obtained from Sigma (St. Louis, MO). Chromatographic

separation was achieved on an Acquity HSS T3 column

(2.1 9 50 mm, 1.8 lm) coupled with an Acquity HSS

T3 1.8 lm VanGuard pre-column at 40 �C. The peaks

were separated isocratically with an elution time of

5.0 min for SAM and 2.0 min for SAH at 97 % A

(buffer) and 3 % B (methanol). The buffer composition

for SAM was 50 mM potassium phosphate and 10 mM

heptane sulfonic salt adjusted to pH 4.38 with phos-

phoric acid. The composition for the SAH mobile phase

was 50 mM potassium phosphate. Column equilibration

time required for SAM was 90 min, while equilibration

time for SAH was just 30 min at flow rates of

0.575 mL/min. Buffers and solvents are filtered using

0.22-lm filters prior to use. Samples were held at 4 �C

for the duration of the analysis. The injection volume

for samples and standard was 10 lL. Detection was

performed with a photodiode array detector set to

monitor wavelengths 210–400. Standard was prepared in

a range from 0.78 to 25.00 pmol/lL for SAH and from

0.32 to 10.40 lL for SAM. A standard curve was gen-

erated to allow for automated calculation of results

using the Waters Empower software.

Proteomics

The plasma proteome was quantified for 110 samples from

6 different time points (3 in year 1 and 3 in year 2) but data

from 61 at time point 1 were used in these analyses due to

missing samples. SomaLogic Inc. (Boulder, CO) per-

formed all proteomic assessments and was blinded to the

clinical characteristics of participants in this study. Sam-

ples were analyzed as previously described (Gold 1995;

Brody and Gold 2000; Gold et al. 2010; Ostroff et al. 2010;

Brody et al. 2012).

Genomic analysis

DNA preparation

About 1 mL of whole blood sample from each participant

was used for DNA extraction. The genomic DNA samples

were extracted and purified using the QIAamp DNA Blood

Mini Kit (QIAGEN, Valencia, CA), following the protocol

provided by the manufacturer. The quality and quantity of

each DNA samples were measured using a NanoDrop 8000

(Thermo Scientific, Wilmington, DE). The Infinium Whole

Genome Genotyping technology with the HumanOmni1-

Quad version 1.0 kits (Illumina, San Diego, CA) was used

for genotyping analyses following the manufacturer’s

protocol. The arrays were scanned on a high-resolution

iScan (Illumina) and processed using the BeadStudio

software version 3.1 (Illumina). The overall genotyping

call rate on all samples was above 98 %. Data from 45

unique participants (15 participants attended both years)

met these criteria.

Preprocessing of genotyping data

Raw SNP data were first preprocessed, removing SNPs

with a GC score\0.7, and those that were not genotyped in

all participants. SNPs with minor allele frequency\0.1 and

those significantly diverging from Hardy–Weinberg equi-

librium were also removed. The remaining SNPs were

filtered to include only those present in the metabolic/

protein–protein interaction (PPI) network used in the ana-

lysis, resulting in a final dataset of 125,959 SNPs.

408 Page 4 of 19 Genes Nutr (2014) 9:408

123



Network analysis

A metabolic/PPI network was constructed based on the

human interaction networks manually curated databases

(Ma et al. 2007; Yu et al. 2012). The largest connected

component of this network comprised 116,210 interactions

between 13,705 genes, containing 125,959 SNPs present on

the Illumina 1 M Quad Array. The network was partitioned

into topological modules using the spinglass.community

function in the igraph library in R (Csardi and Nepusz

2006) resulting in 58 topological modules (mean module

size: 236 nodes; SD: 564 nodes).

SNP-, gene-, and network-level analyses

Significant correlations between genotype and met_PC1

levels were assessed in each SNP using generalized

estimating equations (GEE), as implemented in the

geepack library in R (Højsgaard et al. 2006). Met_PC1

was modeled as a function of genotype at each SNP

locus, controlling for age, gender, average Healthy

Eating Index, and sibling relationships among the par-

ticipants (the latter being included as an independence

correlation structure in the GEE models). Although

some participants attended both years of the camp, only

one genotype per participant was used in this analysis.

Resulting p values were corrected for multiple testing

using the procedure proposed by Benjamini and Hoch-

berg (1995). Nominal p values were used as input for

the VEGAS algorithm, which accounts for size, level of

polymorphism, and linkage disequilibrium relationships

within genes to determine genewise p values from SNP-

level results (Liu et al. 2010). Genes reaching signifi-

cance (q \ 0.1) were used in hypergeometric tests

(implemented using the HTSanalyzeR library in R) to

determine significant enrichment of each of the 58

modules in the interaction network. Modules with

q value \0.1 were considered as significantly enriched

in genes related to micronutrients. In order to assess the

biological processes that may be directly or indirectly

implicated by genetic variation in our met_PC1 genes,

the functional profile of each significant module was

determined using the ClueGO (Bindea et al. 2009)

plugin for Cytoscape. ClueGO functional profiles illus-

trated in Fig. 6 and Supplementary files include KEGG

pathways that are significantly overrepresented among

module nodes, using hypergeometric tests and correct-

ing p values using the Benjamini and Hochberg method

(see Bindea et al. 2009) for technical details on the

generation of functional profile networks.

Significant genes were also analyzed in the context of

the ArrayTrack QTL database (Harris et al. 2009; Xu et al.

2010) to determine significantly overrepresented QTL

phenotypes. Gene sets were constructed by combining all

genes within 1 Mbp of QTL mapping to each of the 36

phenotypes (containing at least one significant gene from

our analysis) in the ArrayTrack database. Hypergeometric

tests were then performed to identify which QTL pheno-

types were significantly enriched in the significant genes

from our analysis.

Results

PCA of metabolite levels

Mean plasma levels of metabolites (Hcy; riboflavin; pyri-

doxal; thiamine; and vitamins A, D, E) and erythrocyte

SAM/SAH are illustrated with hierarchical clustering in

Fig. 1a. This analysis revealed that individuals (represented

in rows) with higher SAM/SAH tended to have higher

plasma levels of fat-soluble vitamins A and D and medium

or low plasma levels of vitamin E, thiamine, and pyridoxal.

Individuals with low SAM/SAH tended to have the oppo-

site patterns of these metabolites.

Given the strong patterns of correlation among the

plasma metabolites, PCA was used to identify latent

metabolite variables. The first principal component

(met_PC1) explained 41 % (Fig. 1b, c) of the variation in

metabolite profile and stratified the participants primarily

based on their levels of vitamin A, Hcy, SAM/SAH, thia-

mine, pyridoxal, and vitamin E. Vitamin D and riboflavin

contributed to the second principal component and

explained 5 % of the variation (Fig. 1b, c) in the dataset.

To our knowledge, these nutrient–nutrient associations

have not been previously reported and would not have been

identified by standard single-variant analysis. Although

met_PC1 is a continuous variable, the analysis and heat

map indicate metabolic patterns that could be used to group

individuals for different nutritional interventions.

Proteomic associations with metabolite patterns

Plasma levels of 1,129 proteins in baseline samples were

analyzed using SomaLogic DNA aptamer technology

(Kraemer et al. 2011; Gold et al. 2011). Robust linear

regression identified 51 proteins significantly associated

with the met_PC1 variable at p \ 0.1 corrected for multi-

ple comparisons (Fig. 2; Supplement 1). Values of

met_PC1 corresponding to high vitamin A, Hcy, SAM/

SAH were negatively correlated with well-studied proin-

flammatory proteins, such as CSF1, TNFSF15, C3, SELE,

and CD86. These proteins had a weak positive correlation

with met_PC1 corresponding to high levels of vitamin E,

pyridoxal, and thiamine.
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Correlation analysis and hierarchical clustering pro-

duced two main branches differing in the percentage of

plasma-soluble and membrane proteins versus cytosolic

proteins (Fig. 2; see brackets at bottom). We previously

observed two clusters of blood versus cytosolic proteins

associated with erythrocyte SAM/SAH ratios (Monteiro

et al. 2014). The cytosolic proteins in the blood were likely

produced by apoptotic processes, although the current data

cannot discriminate between normal and pathological cell

death.

Genetic analyses

Analysis of genotype–metabolite correlations

within a global protein interaction network

Micronutrients and their associated metabolites are

involved in a larger network of interactions than can be

identified by metabolic pathway tools or pairwise regula-

tory or protein–protein interactions. The Edinburgh human

metabolic network and a second manually curated inter-

action database (Ma et al. 2007; Yu et al. 2012) were used

to construct a global network of metabolic and protein–

protein interactions (Fig. 3). The largest connected com-

ponent of this network comprised 116,210 interactions

between 13,705 genes. This global network was subse-

quently partitioned into topological modules using a heu-

ristic approach to topological partitioning based on

simulated annealing (Reichardt and Bornholdt 2006). The

resulting global network consisted of 58 topological mod-

ules with mean module size of 236 nodes (minimum

module size: 2; maximum size: 2351). Topological mod-

ules are loosely analogous to biological pathways in that

they represent functionally cohesive groups of interacting

genes/proteins, and as such they provide a partitioning of

the overall network into biological subsystems to be used

as a framework for the omics data analysis. The advantage

of network modules as an alternative to pathways is that

they capture the inherent overlap and intersection between

canonical pathway models.

The genes in the global interaction network collectively

contained 125,959 SNPs represented on the 1 M Quad

Array after preprocessing genotyping data. To associate the

network to the experimental data, the met_PC1 was mod-

eled as a function of genotype at each SNP locus using

general estimating equations (GEE), controlling for age,

sex, average Healthy Eating Index score, and sibling rela-

tionships among the participants (Fig. 4). A total of 3234

SNPs were significantly correlated with met_PC1 after

correction for multiple testing (adjusted p \ 0.05; Sup-

plement 2). An example of the genotype results using the

top 50 most significant SNPs is shown in Fig. 5, which

shows differences in genotypes across met_PC1 values.

The complex combination of all identified SNPs contrib-

utes to met_PC1 values, which are composed of 5 metab-

olites and SAM/SAH. Others have concluded that complex

phenotypes result from the contribution of thousands of

SNPs, each with low effect size (Stahl et al. 2012; Hemani

et al. 2013).
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Fig. 1 Metabolite-level heat map and principal component analysis

of vitamin levels. a Metabolite heat map where individuals are

represented in the rows, and mean value of metabolite levels from

three blood samplings is in the columns. b Principal component

analysis of mean values of vitamin or metabolites. Numbers indicate

values for individuals (c). Variances in each principal component (see

‘‘Materials and methods’’ section for details)
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Nominal p values were used as input for the VEGAS

algorithm, which accounts for size, level of polymorphism,

and linkage disequilibrium relationships within genes to

determine genewise p values from SNP-level results (Liu et al.

2010). The result was 1,875 statistically significant genes

associated with the met_PC1 variable, which were unevenly

distributed among 46 of the 58 modules (Supplement 3).

Hypergeometric tests (see ‘‘Materials and methods’’

section) were used to test for significant overrepresentation

of met_PC1 genes and met_PC1 proteins with q \ 0.1 in

each of the 58 modules. No modules were significantly

enriched in met_PC1 proteins; however, four modules

(Table 1) were found to be significantly enriched in genes

related to the met_PC1 variable using a q value of\0.1 for

the module. Module 45 had ten genes, of which four were

significantly associated with met_PC1. These were the

intracellular-localized proteins coproporphyrinogen oxi-

dase (CPOX) and high-mobility group protein 1 (HMG1)

and two plasma membrane-associated proteins sarcoglycan

zeta (SGCZ) and sphingomyelin synthase 1 (SGMS1).

Biological interpretation of this module is difficult as these

10 genes are significantly overrepresented in a set of

functionally distinct pathways (porphyrin and chlorophyll

metabolism, viral myocarditis, arrhythmogenic right ven-

tricular cardiomyopathy, hypertrophic cardiomyopathy,

dilated cardiomyopathy). Although the cardiac function

pathways are potentially interesting, developing a strong

hypothetical relationship between module function and

nutritional health is difficult with such a small number of

genes. Hence, the remaining discussion will focus on
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modules 52, 2, and 18. Each module was also tested for the

enrichment of genes that interact with, metabolize, or are

regulated by the metabolites measured in this study

(Monteiro et al. 2014). These ‘‘micronutrient neighbor-

hoods’’ (275 genes in total) were identified in the MetaCore

database (version 6.10, build 31731) as all genes that

directly interacted with metabolites measured in this study.

The neighborhood may be considered a distinct level or

subsystem between a pathway (e.g., the one-carbon path-

way) and the modules within the global network. Under-

standing the entire system requires knowledge from the

single reaction, pathway, neighborhood, and integrated

network. Three modules of the 58 in the network were

statistically enriched in these micronutrient genes

(Table 2). Notably, module 18 was enriched in both the

met_PC1 genes (Table 1), and the neighborhood genes

(Table 2) linked to the metabolites measured in the study,

thus indicating that it contains both statistical associations

with micronutrient levels and also known functional asso-

ciations with micronutrients.

Functional and genetic analyses of statistically significant

genes and modules

In order to assess the biological processes that may be

directly or indirectly implicated by genetic variation in our

met_PC1 genes, the functional profile of each significant

module was determined using data mining tools including

the ClueGO plugin in Cytoscape (Bindea et al. 2009), the

KEGG pathway database (http://www.genome.jp/kegg/

pathway), ArrayTrack QTL (Xu et al. 2010) database, and

literature mining. All pathways described in the ClueGO

analysis results were significantly overrepresented in the

given module (adjusted p value \0.05).

Module 18: Functional annotation

Based on KEGG pathway annotations, the genes in Module

18 (Fig. 6) included about 80 % of the pyrimidine pathway

genes and similar percentages for purine, nicotinamide, RNA

polymerase, riboflavin, and collecting duct secretion

Fig. 3 Conceptual approach for gene selection. The analysis focused

on SNPs within genes with known functional association with the

metabolites (orange rectangles) measured in the study. This was

accomplished by mining all genes from the MetaCore database with a

direct functional connection to any of these metabolites. This resulted

in 275 unique genes, designated as micronutrient neighbor genes

(black balls). In parallel, a global metabolic/PPI interaction network

was partitioned into topological modules. Modules that were signif-

icantly enriched in micronutrient neighborhood genes were defined as

micronutrient systems
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processes (Supplement 3, Module column and Supplement 4).

Parts of these pathways and processes may be found in other

modules since the simulated annealing algorithm optimizes

local interactions and does not consider the boundaries

between pathways, as they exist in pathway databases.

Graphical representation of the KEGG pathways in

Module 18 provides a deeper view of the processes rep-

resented in this module (Fig. 6; Supplement 4, Bar-

Graph18). Specifically, a cluster of Module 18 nodes

includes genes that function in salivary, bile, pancreatic,

and gastric acid secretion processes, such as ADCY1,

GAST, and KCNJ1. Processes related to secretion func-

tions, specifically gap junction structures, calcium and

chemokine signaling pathways, and vascular smooth mus-

cle contraction, are also strongly represented in this section

of Module 18. Several pathways and networks involved in

DNA repair processes are found in this module. The rela-

tionships of genes associated with met_PC1 with gastro-

intestinal function are illustrated the KEGG gastric acid

secretion pathway shown in Fig. 7. Genes significantly

correlated with met_PC1 are highlighted in yellow. Rep-

resentative samples of SNP genotype differences in

ADCY1, PRKCA, and KCNJ1 are shown in the boxplots

(Fig. 7a–c). These results suggest that genetic variation in

these genes may cause dynamic variation in gut function,

which may alter plasma micronutrient levels.

Module 2: Functional annotation

Module 2 is functionally enriched in immune function path-

ways and processes influenced by or involved in infectious

diseases (Supplement 4, Barograph). Over 70 % of the genes

involved in complement/coagulation pathways are found in

this pathway. In addition, disease pathways affected by

inflammation such as Alzheimer’s, type 1 diabetes, and

rheumatoid arthritis are also represented in this module.

Proteomic analysis of blood proteins demonstrated the asso-

ciation between a combination of metabolites including

micronutrients (met_PC1) and inflammatory processes

(Fig. 2).

Fig. 4 Methodological approach to the correlation of genotype and

metabolite profile via network analysis. Metabolite data were first

summarized by a single principal component and compared to each

SNP (gray boxes) in the genetic dataset using GEE. Nominal p values

from the GEE analysis (SNPs in red boxes) were used as input to the

VEGAS algorithm to determine gene-level p values from SNP-level

data (red lines indicate a gene with multiple SNPs, black line with

single SNPs). Significant genes were then mapped to the global

interaction network and considered as ‘‘hits’’ in hypergeometric tests

of each topological module in the network
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Module 52: Functional annotation

Module 52 is the largest in the network with over 2300

genes of which 422 had SNPs statistically associated with

met_PC1. Genes and pathways involved in immune func-

tions are enriched in module 52 (Supplement 4,
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Fig. 5 Genetic pattern for top 50 most significant SNPs (y-axis) in module 18 associated with Met_PC1 (x-axis)

Table 1 Network modules

significantly enriched in

met_PC1 genes

Module ID Module size Expected hits Observed hits p value Adjusted p value

52 2,351 317.35 415 1.33 9 10-10 3.86 9 10-9

2 1,157 156.18 188 2.23 9 10-3 3.23 9 10-2

45 10 1.35 4 6.23 9 10-3 6.02 9 10-2

18 465 62.76 79 1.22 9 10-2 8.86 9 10-2

Table 2 Network modules

significantly enriched in

neighborhood micronutrient

genes

Module ID Module size Expected hits Observed hits p value Adjusted p value

47 580 9.47 62 8.23 9 10-35 2.39 9 10-33

18 465 7.6 42 9.07 9 10-21 1.32 9 10-19

11 11 0.18 10 1.74 9 10-22 1.68 9 10-19

cFig. 6 Detail image of module 18 (a), highlighting genes that are

functionally linked to micronutrients (blue nodes) and genes that are

statistically associated (via genotype) with micronutrient profile in the

delta population (yellow circles). b Significantly overrepresented

KEGG pathways in module 18, wherein each node represents a

pathway, and the edges indicate the level of similarity between

pathways based on shared gene content
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BarGraph52) with cytokine signaling and other immune

pathways overlapping with Module 2. The secretory and

absorption pathways in Module 18 also have components

in Module 52. About 75 % of the phosphatidylinositol and

inositol phosphate pathways involved in proliferation,

survival, migration, and differentiation in different cell

types including the development and regulation of

B-lymphocyte and T-lymphocyte functions (So and Fru-

man 2012) are found in Module 52. Functional analysis

also highlights the known links between diabetes and

immune function, since type 1 and type 2 diabetes genes

and pathways and *50 % of the insulin signaling pathway

occur in Module 52.

Quantitative trait loci mapping and cofactor analyses

The mapping to functional systems described above associ-

ates variation in met_PC1 with a wide range of biological

processes consistent with the role of cofactors in enzymatic

reactions, structural components of enzymes and proteins,

and regulatory processes. Another approach to associate a

gene with a phenotype is to determine the gene’s chromo-

somal location relative to genomic regions contributing to

polygenic phenotypes identified by quantitative trait loci

(QTL) and GWAS data (Kaput et al. 1994, 2004). In many

cases, GWAS identify the most likely candidate genes within

a region that might explain some aspect of the phenotype

Fig. 7 Genetic association of gastric acid secretion pathway genes

with met_PC1. Rectangles represent pathway genes, and circles

represent metabolites. Genes that were significantly correlated with

met_PC1 are highlighted in yellow, and three representative example

SNPs are shown in a–c
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being studied. However, in the absence of direct genetic or

biochemical experimental data, other genes in the QTL and

GWAS regions may also contribute to the phenotype studied.

Genes significantly correlated with met_PC1 were used as

search terms in the ArrayTrack (Harris et al. 2009) QTL tool

(Xu et al. 2010) to identify those that overlap with a 1M-bp

region containing the QTL contributing to 36 phenotypes,

selected based on physiological relevance to this study. A

large number of met_PC1 genes overlapped with QTL for

these 36 phenotypes; however, only QTLs for body weight,

serum apolipoprotein E, serum leptin, and serum lipid levels

were statistically enriched with these genes (q \ 0.15).

Met_PC1 genes mapping to these significant phenotypes are

shown in Fig. 8 (listed in Supplement 5).

Lists of statistically significant genes alone, in modules, or

mapped to QTLs identify potential candidate genes for a given

phenotype. However, biological processes are necessarily

controlled by gene–environment interactions. To associate

the genes identified by data mining methods with nutrients,

GeneCards and EBI’s cofactor database were searched for

each of the genes mapping to QTLs for plasma levels of leptin,

adiponectin, glucose, and for type 2 diabetes mellitus (T2DM)

loci. Many of the statistically significant met_PC1 genes that

mapped to these loci had a metal cofactor, and only a few

required organic cofactors (not shown). For example, CD320,

the transcobalamin receptor, mapped to the GLUCO3_H QTL

(glucose level) on chromosome 19. LRP2, which is involved

in vitamin uptake, mapped to a chromosomal region (GLU-

CO15_H on chromosome 2) associated with hyperglycemia.

Several met_PC1 genes (CHKA which is involved in choline

metabolism; NOX4, TM7SF2, ALDH3B1, NDUFS8 are

associated with NADPH) mapped to serum adiponectin level

QTLs. Two genes (SHMT1, cofactors pyridoxal phosphate

and folate; ALDH3A2–NADPH) mapped to serum leptin

QTLs on chromosome 17. DNMT3B mapped to a serum

cholesterol QTL and to a T2DM susceptibility locus on

chromosome 20.

The limited ability to measure gene expression, protein

levels, or enzyme activities in the appropriate tissues often

prevents testing the contribution of a gene to a phenotype.

Proteins in blood may be surrogates or involved in specific

phenotypes. Eight of the 51 proteins correlated with met_PC1

(Fig. 2) mapped to 11 different QTLs (Table 3). While six of

these proteins may be released from damaged cells for

unknown reasons in the healthy state, two proteases normally

found in the plasma were associated with body weight

(KLK11, C1S), serum cholesterol (C1S), and APOE levels,

blood pressure, and susceptibility to COPD (KLK11). Plau-

sible biochemical explanations could be made for their par-

ticipation in these phenotypes due to their enzymatic activities

but further genetic and biochemical studies are necessary to

test whether they are involved in these conditions.

Discussion

Health and disease processes result from a complex inter-

action between multiple genes and environmental factors.

Fig. 8 Circular genome images of modules 18, 52, and 2, each illustrating genes significantly correlated with met_PC1, and overlapping human

QTLs associated with body weight, serum leptin, serum lipid, and serum apolipoprotein
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The systems nutrition analyses reported here used data

from dietary intakes, plasma and erythrocyte metabolite

levels, plasma proteins, and genetic makeup in a cohort of

children/teens aged 6–14. Discussed below are (1) the main

biological results, (2) strategy and methodological con-

siderations, and finally, (3) implications for health and

disease research.

Biological findings

Met_PC1 and SAM/SAH

Principal component analysis (PCA) identified a metabolite

pattern, met_PC1, with positive and negative correlations

between plasma micronutrients, plasma Hcy, and SAM/

SAH ratio in erythrocytes. Plasma vitamin A and Hcy

correlated positively with SAM/SAH, and vitamin E, thi-

amine, and pyridoxal correlated negatively in this popula-

tion. While statistical associations do not prove causality,

these correlations suggest that micronutrients and metab-

olites operate within a network that includes SAM/SAH

metabolism. Altering the proportion of metabolites relative

to each other may alter methylation potential and therefore

epigenetic reactions. Others have shown that SAM/SAH

correlated with differences in methylation at metastable

epialleles based on season and food availability (Waterland

et al. 2010). Changes in epigenetic programming at critical

developmental windows such as in utero, early childhood,

or during puberty have been associated with developmental

plasticity, health, and susceptibility to chronic diseases in

adults (Barker et al. 1993; Gluckman et al. 2009; Kuss-

mann et al. 2010).

Met_PC1 and plasma proteins

Met_PC1 was also associated with levels of pro-inflam-

matory proteins. Individuals with high vitamin A, Hcy (but

still below the clinical cutoff of 15 lmol/L), and SAM/

SAH had lower levels of many of these inflammatory

proteins. The correlation was modest for any single protein

to met_PC1 value. However, certain proteins shared simi-

lar correlation coefficients and functional analysis based on

gene ontologies, and some of these correlated proteins that

participated in the same networks. Since met_PC1 is an

empirically defined value specific to this study, the corre-

lations among these plasma metabolites will necessarily

require testing in other genetic makeups and environments.

Met_PC1 and global protein topological analysis

To discover whether the met_PC1 variable was associated

with genetic variation in molecular interaction networks or

subsystems, a metabolic/protein–protein interaction

network was constructed based on two manually curated

interaction databases (Ma et al. 2007; Yu et al. 2012). The

network was partitioned into topological modules, each of

which was assessed for significant enrichment with

met_PC1-correlated genes using a hypergeometric test.

Three modules were identified, 2 of which contained sub-

stantial numbers of immune and metabolic function genes

and the third included genes in a range of secretory and

gastrointestinal functions. Although the met_PC1 genes

were not directly functionally annotated to every one of the

identified processes/pathways in these modules, they may

either be directly contained in these processes/pathways, or

indirectly connected via a small number of degrees of

separation. Variation in plasma micronutrient levels and

Hcy, and erythrocyte SAM and SAH, and specifically the

ratios of these metabolites relative to each other, was

associated with genetic variations in immune and gastro-

intestinal functions. Chronic disturbance in gastrointestinal

function (such as that seen in inflammatory bowel disease,

Crohn’s disease, and environmental enteropathy) may

directly contribute to micronutrient deficiencies due to

altered nutrient absorption (Valentini et al. 2008).

Although the cohort in the present study did not present

with diagnosed intestinal disorders, it may be the case that

a range of SNPs contributes to subclinical variation in

gastrointestinal function, which then relates to variation in

micronutrient levels. Additional focused work on entero-

cytes and intestinal immune cells would be required to

clarify the potential functional consequences of the SNPs

identified in this study.

Metabolite principal component 1 (Met_PC1) was

derived from the relationship of vitamins A, E, thiamine,

pyridoxal, and the metabolites Hcy, SAM/SAH ratio.

Correlations of met_PC1 to immunity were not unexpected

since a rich literature exists for individual micronutrients

and various aspects of immune function and regulation

(Bhaskaram 2002; Maggini et al. 2007; Baeke et al. 2010;

Ströhle et al. 2011; Ooi et al. 2012). The genetic analysis

nevertheless revealed new insights into the many genes and

their functions that may be associated with different plasma

levels of metabolites and therefore with diet.

Strategy and methodological considerations

The experimental design included several uncommon

approaches for human nutritional studies:

1. The use of CBPR with biomedical and network

biology analyses. Community-based research engages

participants in the research study and provides oppor-

tunities for health- and nutrition-related exchanges

between community members and researchers. Com-

munity-based research is done in ‘‘real’’ time with
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lifestyle and other environmental conditions that are

not under the control of the researcher. These factors

likely introduce noise into the study and analyses, but

the measured biological ‘‘signals’’ include the contri-

bution from those unmeasured influences. Our goal

was to measure as many physiological and environ-

mental variables as possible to associate signals with

phenotype. In addition, community-based results from

such studies are likely to be translated more rapidly to

individuals and populations (McCabe-Sellers et al.

2008).

2. Data from this study were previously analyzed at the

group level (such as between SAM/SAH groups) and

at the population level (Monteiro et al. 2014). We have

also extensively analyzed dietary intake patterns,

metabolomics, proteomic, and genomic data for indi-

vidual participants in this study. For example, dietary

intake variables were compared to metabolite patterns

in each participant to determine whether common

patterns could be identified at the individual level, and

DNA ancestry was analyzed for each individual for the

possibility of using genetic admixture mapping meth-

ods (Cheng et al. 2010) (data not shown). Methods

which identify groups of individuals with related

metabolic features but still allow for n-of-1 analysis

may extend the recent personal omics analysis for

molecular and medical phenotypes (Chen et al. 2012).

Reporting data and results from studies with more than

one individual, however, may require development of

novel publication strategies.

3. Levels of metabolites in each participant were analyzed

and shown in one figure as opposed to reporting results

of the average metabolite level in separate graphs.

Although such methods are common in transcriptomic

and metabolomics literature, we identified patterns of

metabolite levels that revealed unanticipated nutrient–

nutrient statistical interactions. Standard PCA con-

verted the graphic representation of metabolite levels to

a statistic specific called metabolite principal compo-

nent 1 (met_PC1). Met_PC1 represented 6 strongly and

one weakly associated (vitamin D) measured metabo-

lites and their interactions. Although the value of this

statistic is specific for the study reported here, similar

methods may allow for more comprehensive analyses

of interacting metabolites.

4. Analyzing genetic differences based on met_PC1 in a

metabolic/PPI network partitioned into topological

modules allowed for the identification of physiological

functions (immune, metabolic, and secretory) associ-

ated with gene–metabolite relationships identified in

our statistical analysis. Rather than seeking a small

number of SNPs with large effect on our phenotype,

our network-based approach inherently highlights

multivariate groups of functionally related SNPs/genes

that are statistically associated with a phenotype.

Defined interventions can be developed from our

results and, equally importantly, tested by measuring

parameters of immune and GI function that were

identified in this study.

Although the limiting aspect of the study reported here is

the small sample size (45 genetically unique individuals

with 61 sets of metabolite, protein, and diet variables), the

combination of these methodological approaches may

provide new strategies for genomic and nutrigenomic

studies. Expanded sample size will be particularly impor-

tant for genetic analysis in order to avoid exceedingly small

sample sizes for minor alleles, as we observed at times in

our genetic analysis.

Implications for reproducibility

The results described in this manuscript and recent pub-

lications on intra-individual variability in physiological

status found in environments that have large changes in

nutrient availability (Dominguez-Salas et al. 2013) dem-

onstrate the difficulty in replicating biomedical research,

particularly for genetic and gene–environment interaction

associations. Hierarchical clustering of proteins (Fig. 2)

and SNPs (Fig. 5) correlated with met_PC1 helps visual-

ize the proteomic and genotypic differences as combina-

tions of SNPs or proteins rather than as single markers

(even though these were derived from univariate analysis

and corrected for multiple comparisons). No single protein

or SNP is always correlated with met_PC1. This is what

we would expect to observe, in part because of gene–gene

and gene–environment interactions, epigenetic regulation,

and other interactions. This perspective better fits the

biological reality of multiple genes and their products

contributing to a complex phenotype (in this case

met_PC1). Our working hypothesis is that testing these

associations in other populations and also in others

experimental designs would be needed to identify com-

mon patterns of variants within these genotype data sets

that might explain the percentage of genetic contribution

to a given phenotype. Subsets of genes will contribute or

not contribute to a complex phenotype (e.g., obesity and

diabetes) based on interactions with diet or other envi-

ronmental factors. In addition, the adaptations to diverse

environments over human evolution may have selected

different collections of genes for similar environments in

different environments. The most notable, and still con-

troversial example, is the different functional adaptations

to Tibetan and Andean high altitudes (Beall 2007). Nev-

ertheless, we predict that gene–environment interactions

producing the same phenotype will have overlapping
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genes (much like Venn diagrams). Some pathways and

therefore genes will be shared, and others may contribute

less significantly in different genetic subpopulations.

Discovering these similarities and differences may lead to

an understanding of targeting diet and lifestyles to opti-

mize health.
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