520 research outputs found

    Cryobiopsy increases the EGFR detection rate in non-small cell lung cancer

    Get PDF
    Objectives: Detection of activating epidermal growth factor receptor (EGFR) mutation is crucial for individualized treatment of advanced non-small-cell lung cancer (NSCLC). However little is known about how biopsy technique affects the detection rate of EGFR mutations. This retrospective, single center study evaluated the detection rate of EGFR mutations in tissue obtained by bronchoscopic cryobiopsy and compared this to other standard tissue sampling techniques. Materials and methods: We retrospectively analyzed 414 patients with histologically confirmed NSCLC and known EGFR mutation status between 3/2008-7/2014. Tumor specimens obtained by tissue preserving bronchoscopic cryobiopsy were compared to those obtained by other techniques. Results and conclusion: Analysis of bronchoscopic cryobiopsy tissue detected 29 activating EGFR mutations in 27 (21.6 ) out of 125 patients, while analysis of tissue obtained by non-cryobiopsy techniques (bronchoscopic forceps biopsies, fine needle aspiration, imaging guided transthoracical and surgical procedures) detected 42 EGFR mutations in 40 (13.8 ) out of 298 patients (p < 0.05). Cryobiopsy increased detection rate of EGFR mutations in central tumors compared with forceps biopsy (19.6 versus 6.5 , p < 0.05), while an insignificant trend was detected also for peripheral tumors (33.3 versus 26.9 ). Bronchosopic cryobiopsy increases the detection rate of activating EGFR mutations in NSCLC in comparison to other tissue sampling techniques. This will help to optimize individualized treatment of patients with advanced tumors. Because of the retrospective nature of this analysis, a prospective trial is mandatory for final assessment. © 2020 The Author(s

    Optimal decision-making in mammals : insights from a robot study of rodent texture discrimination

    Get PDF
    Texture perception is studied here in a physical model of the rat whisker system consisting of a robot equipped with a biomimetic vibrissal sensor. Investigations of whisker motion in rodents have led to several explanations for texture discrimination, such as resonance or stick-slips. Meanwhile, electrophysiological studies of decision-making in monkeys have suggested a neural mechanism of evidence accumulation to threshold for competing percepts, described by a probabilistic model of Bayesian sequential analysis. For our robot whisker data, we find that variable reaction-time decision-making with sequential analysis performs better than the fixed response-time maximum-likelihood estimation. These probabilistic classifiers also use whatever available features of the whisker signals aid the discrimination, giving improved performance over a single-feature strategy, such as matching the peak power spectra of whisker vibrations. These results cast new light on how the various proposals for texture discrimination in rodents depend on the whisker contact mechanics and suggest the possibility of a common account of decision-making across mammalian species

    Influence of Biopsy Technique on Molecular Genetic Tumor Characterization in Non-Small Cell Lung Cancer—The Prospective, Randomized, Single-Blinded, Multicenter PROFILER Study Protocol

    Get PDF
    The detection of molecular alterations is crucial for the individualized treatment of advanced non-small cell lung cancer (NSCLC). Missing targetable alterations may have a major impact on patient’s progression free and overall survival. Although laboratory testing for molecular alterations has continued to improve; little is known about how biopsy technique affects the detection rate of different mutations. In the retrospective study detection rate of epidermal growth factor (EGFR) mutations in tissue extracted by bronchoscopic cryobiopsy (CB was significantly higher compared to other standard biopsy techniques. This prospective, randomized, multicenter, single blinded study evaluates the accuracy of molecular genetic characterization of NSCLC for different cell sampling techniques. Key inclusion criteria are suspected lung cancer or the suspected relapse of known NSCLC that is bronchoscopically visible. Patients will be randomized, either to have a CB or a bronchoscopic forceps biopsy (FB). If indicated, a transbronchial needle aspiration (TBNA) of suspect lymph nodes will be performed. Blood liquid biopsy will be taken before tissue biopsy. The primary endpoint is the detection rate of molecular genetic alterations in NSCLC, using CB and FB. Secondary endpoints are differences in the combined detection of molecular genetic alterations between FB and CB, TBNA and liquid biopsy. This trial plans to recruit 540 patients, with 178 evaluable patients per study cohort. A histopathological and molecular genetic evaluation will be performed by the affiliated pathology departments of the national network for genomic medicine in lung cancer (nNGM), Germany. We will compare the diagnostic value of solid tumor tissue, lymph node cells and liquid biopsy for the molecular genetic characterization of NSCLC. This reflects a real world clinical setting, with potential direct impact on both treatment and survival

    MARIS: Method for Analyzing RNA following Intracellular Sorting

    Get PDF
    Transcriptional profiling is a key technique in the study of cell biology that is limited by the availability of reagents to uniquely identify specific cell types and isolate high quality RNA from them. We report a Method for Analyzing RNA following Intracellular Sorting (MARIS) that generates high quality RNA for transcriptome profiling following cellular fixation, intracellular immunofluorescent staining and FACS. MARIS can therefore be used to isolate high quality RNA from many otherwise inaccessible cell types simply based on immunofluorescent tagging of unique intracellular proteins. As proof of principle, we isolate RNA from sorted human embryonic stem cell-derived insulin-expressing cells as well as adult human β cells. MARIS is a basic molecular biology technique that could be used across several biological disciplines.Howard Hughes Medical InstituteHarvard Stem Cell InstituteNational Institutes of Health (U.S.) (grant 2U01DK07247307)National Institutes of Health (U.S.) (grant RL1DK081184)National Institutes of Health (U.S.) (grant 1U01HL10040804

    STAT3 regulated ARF expression suppresses prostate cancer metastasis.

    Get PDF
    Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19(ARF) as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF-Mdm2-p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14(ARF) expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.Lukas Kenner and Jan Pencik are supported by FWF, P26011 and the Genome Research-Austria project “Inflammobiota” grants. Helmut Dolznig is supported by the Herzfelder Family Foundation and the Niederösterr. Forschungs-und Bildungsges.m.b.H (nfb). Richard Moriggl is supported by grant SFB-F2807 and SFB-F4707 from the Austrian Science Fund (FWF), Ali Moazzami is supported by Infrastructure for biosciences-Strategic fund, SciLifeLab and Formas, Zoran Culig is supported by FWF, P24428, Athena Chalaris and Stefan Rose-John are supported by the Deutsche Forschungsgemeinschaft (Grant SFB 877, Project A1and the Cluster of Excellence --“Inflammation at Interfaces”). Work of the Aberger lab was supported by the Austrian Science Fund FWF (Projects P25629 and W1213), the European FP7 Marie-Curie Initial Training Network HEALING and the priority program Biosciences and Health of the Paris-Lodron University of Salzburg. Valeria Poli is supported by the Italian Association for Cancer Research (AIRC, No IG13009). Richard Kennedy and Steven Walker are supported by the McClay Foundation and the Movember Centre of Excellence (PC-UK and Movember). Gerda Egger is supported by FWF, P27616. Tim Malcolm and Suzanne Turner are supported by Leukaemia and Lymphoma Research.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms873

    The protective effect of human renal sinus fat on glomerular cells is reversed by the hepatokine fetuin-A

    Get PDF
    Renal sinus fat (RSF) is a perivascular fat compartment located around renal arteries. In this in vitro and in vivo study we hypothesized that the hepatokine fetuin-A may impair renal function in non&nbsp;alcoholic fatty liver disease (NAFLD) by altering inflammatory signalling in RSF. To study effects of the crosstalk between fetuin-A, RSF and kidney, human renal sinus fat cells (RSFC) were isolated and cocultured with human endothelial cells (EC) or podocytes (PO). RSFC caused downregulation of proinflammatory and upregulation of regenerative factors in cocultured EC and PO, indicating a protective influence of RFSC. However, fetuin-A inverted these benign effects of RSFC from an anti- to a proinflammatory status. RSF was quantified by magnetic resonance imaging and liver fat content by 1H-MR spectroscopy in 449 individuals at risk for type 2 diabetes. Impaired renal function was determined via urinary albumin/creatinine-ratio (uACR). RSF did not correlate with uACR in subjects without NAFLD (n&thinsp;=&thinsp;212, p&thinsp;=&thinsp;0.94), but correlated positively in subjects with NAFLD (n&thinsp;=&thinsp;105, p&thinsp;=&thinsp;0.0005). Estimated glomerular filtration rate (eGRF) was inversely correlated with RSF, suggesting lower eGFR for subjects with higher RSF (r&thinsp;=&thinsp;0.24, p&thinsp;&lt;&thinsp;0.0001). In conclusion, our data suggest that in the presence of NAFLD elevated fetuin-A levels may impair renal function by RSF-induced proinflammatory signalling in glomerular cells

    TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer

    Get PDF
    Prostate cancer is the most frequently diagnosed male cancer, and its clinical outcome is difficult to predict. The disease may involve the inappropriate expression of genes that normally control the proliferation of epithelial cells in the basal layer and their differentiation into luminal cells. Our aim was to identify novel basal cell markers and assess their prognostic and functional significance in prostate cancer. RNA from basal and luminal cells isolated from benign tissue by immunoguided laser-capture microdissection was subjected to expression profiling. We identified 112 and 267 genes defining basal and luminal populations, respectively. The transcription factor TEAD1 and the ubiquitin ligase c-Cbl were identified as novel basal cell markers. Knockdown of either marker using siRNA in prostate cell lines led to decreased cell growth in PC3 and disrupted acinar formation in a 3D culture system of RWPE1. Analyses of prostate cancer tissue microarray staining established that increased protein levels of either marker were associated with decreased patient survival independent of other clinicopathological metrics. These data are consistent with basal features impacting on the development and clinical course of prostate cancers

    Diagnostic Yield of Transbronchial Lung Cryobiopsy Compared to Transbronchial Forceps Biopsy in Patients with Sarcoidosis in a Prospective, Randomized, Multicentre Cross-Over Trial

    Get PDF
    Background: Transbronchial lung forceps biopsy (TBLF) is of limited value for the diagnosis of interstitial lung disease (ILD). However, in cases with predominantly peribronchial pathology, such as sarcoidosis, TBLF is considered to be diagnostic in most cases. The present study examines whether transbronchial lung cryobiopsy (TBLC) is superior to TBLF in terms of diagnostic yield in cases of sarcoidosis. Methods: In this post hoc analysis of a prospective, randomized, controlled, multicentre study, 359 patients with ILD requiring diagnostic bronchoscopic tissue sampling were included. TBLF and TBLC were both used for each patient in a randomized order. Histological assessment was undertaken on each biopsy and determined whether sarcoid was a consideration. Results: A histological diagnosis of sarcoidosis was established in 17 of 272 cases for which histopathology was available. In 6 out of 17 patients, compatible findings were seen with both TBLC and TBLF. In 10 patients, where the diagnosis of sarcoidosis was confirmed by TBLC, TBLF did not provide a diagnosis. In one patient, TBLF but not TBLC confirmed the diagnosis of sarcoidosis. Conclusions: In this post hoc analysis, the histological diagnosis of sarcoidosis was made significantly more often by TBLC than by TBLF. As in other idiopathic interstitial pneumonias (IIPs), the use of TBLC should be considered when sarcoidosis is suspected
    • …
    corecore