13 research outputs found

    MnO2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction

    Get PDF
    "Although clean energy generation utilizing the Oxygen Reduction Reaction (ORR) can be considered a promising strategy, this approach remains challenging by the dependence on high loadings of noble metals, mainly Platinum (Pt). Therefore, efforts have been directed to develop new and efficient electrocatalysts that could decrease the Pt content (e.g., by nanotechnology tools or alloying) or replace them completely in these systems. The present investigation shows that high catalytic activity can be reached towards the ORR by employing 1.8 ± 0.7 nm Ir nanoparticles (NPs) deposited onto MnO2 nanowires surface under low Ir loadings (1.2 wt.%). Interestingly, we observed that the MnO2 -Ir nanohybrid presented high catalytic activity for the ORR close to commercial Pt/C (20.0 wt.% of Pt), indicating that it could obtain efficient performance using a simple synthetic procedure. The MnO2 -Ir electrocatalyst also showed improved stability relative to commercial Pt/C, in which only a slight activity loss was observed after 50 reaction cycles. Considering our findings, the superior performance delivered by the MnO2 -Ir nanohybrid may be related to (i) the significant concentration of reduced Mn3+ species, leading to increased concentration of oxygen vacancies at its surface; (ii) the presence of strong metal-support interactions (SMSI), in which the electronic effect between MnOx and Ir may enhance the ORR process; and (iii) the unique structure comprised by Ir ultrasmall sizes at the nanowire surface that enable the exposure of high energy surface/facets, high surface-to-volume ratios, and their uniform dispersion.

    Hierarchical Classification of Financial Transactions Through Context-Fusion of Transformer-based Embeddings and Taxonomy-aware Attention Layer

    Full text link
    This work proposes the Two-headed DragoNet, a Transformer-based model for hierarchical multi-label classification of financial transactions. Our model is based on a stack of Transformers encoder layers that generate contextual embeddings from two short textual descriptors (merchant name and business activity), followed by a Context Fusion layer and two output heads that classify transactions according to a hierarchical two-level taxonomy (macro and micro categories). Finally, our proposed Taxonomy-aware Attention Layer corrects predictions that break categorical hierarchy rules defined in the given taxonomy. Our proposal outperforms classical machine learning methods in experiments of macro-category classification by achieving an F1-score of 93\% on a card dataset and 95% on a current account dataset

    MnO2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction

    Get PDF
    Although clean energy generation utilizing the Oxygen Reduction Reaction (ORR) can be considered a promising strategy, this approach remains challenging by the dependence on high loadings of noble metals, mainly Platinum (Pt). Therefore, efforts have been directed to develop new and efficient electrocatalysts that could decrease the Pt content (e.g., by nanotechnology tools or alloying) or replace them completely in these systems. The present investigation shows that high catalytic activity can be reached towards the ORR by employing 1.8 ± 0.7 nm Ir nanoparticles (NPs) deposited onto MnO2 nanowires surface under low Ir loadings (1.2 wt.%). Interestingly, we observed that the MnO2-Ir nanohybrid presented high catalytic activity for the ORR close to commercial Pt/C (20.0 wt.% of Pt), indicating that it could obtain efficient performance using a simple synthetic procedure. The MnO2-Ir electrocatalyst also showed improved stability relative to commercial Pt/C, in which only a slight activity loss was observed after 50 reaction cycles. Considering our findings, the superior performance delivered by the MnO2-Ir nanohybrid may be related to (i) the significant concentration of reduced Mn3+ species, leading to increased concentration of oxygen vacancies at its surface; (ii) the presence of strong metal-support interactions (SMSI), in which the electronic effect between MnOx and Ir may enhance the ORR process; and (iii) the unique structure comprised by Ir ultrasmall sizes at the nanowire surface that enable the exposure of high energy surface/facets, high surface-to-volume ratios, and their uniform dispersion

    Synthesis and testing of novel alternative oxidase (AOX) inhibitors with antifungal activity against Moniliophthora perniciosa (Stahel), the causal agent of witches' broom disease of cocoa, and other phytopathogens

    No full text
    Background Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora is the causal agent of witches' broom disease (WBD) of cocoa (Theobroma cacao L.) and a threat to the chocolate industry. The membrane-bound enzyme alternative oxidase (AOX) is critical for M. perniciosa virulence and resistance to fungicides, which has also been observed in other phytopathogens. Notably AOX is an escape mechanism from strobilurins and other respiration inhibitors, making AOX a promising target for controlling WBD and other fungal diseases. Results We present the first study aimed at developing novel fungal AOX inhibitors. N-Phenylbenzamide (NPD) derivatives were screened in the model yeast Pichia pastoris through oxygen consumption and growth measurements. The most promising AOX inhibitor (NPD 7j-41) was further characterized and displayed better activity than the classical AOX inhibitor SHAM in vitro against filamentous fugal phytopathogens, such as M. perniciosa, Sclerotinia sclerotiorum and Venturia pirina. We demonstrate that 7j-41 inhibits M. perniciosa spore germination and prevents WBD symptom appearance in infected plants. Finally, a structural model of P. pastoris AOX was created and used in ligand structure-activity relationships analyses. Conclusion We present novel fungal AOX inhibitors with antifungal activity against relevant phytopathogens. We envisage the development of novel antifungal agents to secure food production. (c) 2018 Society of Chemical Industry75512951303CNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paulo142358/2014; 2475535/2013‐82014/15339‐6; 2015/06677‐8; 2015/07653‐5; 2015/09870‐3; 2016/10498‐4; 2017/17000‐

    A novel insight on SARS-CoV-2 S-derived fragments in the control of the host immunity

    Get PDF
    Abstract Despite all efforts to combat the pandemic of COVID-19, we are still living with high numbers of infected persons, an overburdened health care system, and the lack of an effective and definitive treatment. Understanding the pathophysiology of the disease is crucial for the development of new technologies and therapies for the best clinical management of patients. Since the manipulation of the whole virus requires a structure with an adequate level of biosafety, the development of alternative technologies, such as the synthesis of peptides from viral proteins, is a possible solution to circumvent this problem. In addition, the use and validation of animal models is of extreme importance to screen new drugs and to compress the organism's response to the disease. Peptides derived from recombinant S protein from SARS-CoV-2 were synthesized and validated by in silico, in vitro and in vivo methodologies. Macrophages and neutrophils were challenged with the peptides and the production of inflammatory mediators and activation profile were evaluated. These peptides were also inoculated into the swim bladder of transgenic zebrafish larvae at 6 days post fertilization (dpf) to mimic the inflammatory process triggered by the virus, which was evaluated by confocal microscopy. In addition, toxicity and oxidative stress assays were also developed. In silico and molecular dynamics assays revealed that the peptides bind to the ACE2 receptor stably and interact with receptors and adhesion molecules, such as MHC and TCR, from humans and zebrafish. Macrophages stimulated with one of the peptides showed increased production of NO, TNF-α and CXCL2. Inoculation of the peptides in zebrafish larvae triggered an inflammatory process marked by macrophage recruitment and increased mortality, as well as histopathological changes, similarly to what is observed in individuals with COVID-19. The use of peptides is a valuable alternative for the study of host immune response in the context of COVID-19. The use of zebrafish as an animal model also proved to be appropriate and effective in evaluating the inflammatory process, comparable to humans
    corecore