51 research outputs found

    Nucleate Boiling in Water for Different Pressures

    Get PDF

    Schrifttum

    Get PDF
    Dieses Dokument beinhaltet Buchbeschreibungen von "Die Säugetiere Westfalens" (Abhandlung aus dem Westf. Landesmuseums f. Naturkunde), "Naturwaldzellen IV, Weserbergland - Nachträge Niederhein." (Schriftenreihe LÖLF), Fischerei und Naturschutz (Veröff. Rp Detmold) und "Schwermetallbelastung von Böden und Kulturpflanzen in Nordrhein-Westfalen." (Schriftenreihe LÖLF)

    Die Klassifizierung von Schulen als Mittel der Schulsteuerung und lokalen Profilbildung. Begleitumstände, nachkriegszeitliche Anpassungsprobleme und aktuelle Folgen der Klassifizierung des berufsbildenden Schulwesens seit den dreißiger Jahren des 20. Jahrhunderts

    Full text link
    Die Unterscheidung zwischen Berufsschulen, Berufsfachschulen und Fachschulen geht auf einen Erlass des Reichsministeriums für Wissenschaft, Erziehung und Volksbildung von 1937 zurück. Der Erlass, seine Genese und seine langfristigen strukturellen Auswirkungen auf die Benennung der beruflichen Schulen werden unter Zugrundelegung von Dokumenten aus dem DFG-Forschungsprojekt "Datenhandbuch zur deutschen Bildungsgeschichte: Band V: Das Berufsbildende Schulsystem in Deutschland 1815-1945" untersucht und in einen größeren Entwicklungszusammenhang eingeordnet. Besondere Aufmerksamkeit gilt dem Verhältnis zwischen der in den 1930er-Jahren entstandenen Klassifikation, dem Funktionszuwachs der beruflichen Schulen und ihrer Verflechtung mit dem Abschluss- und Berechtigungssystem der allgemeinbildenden Schulen. (DIPF/Orig.)The differentiation between vocational schools, training colleges, and technical colleges goes back to an edict decreed by the German ministry for science, schooling, and national education in 1937. This edict, its origins and its long-term impact on the designation of vocational schools are examined and placed within a broader framework of development on the basis of documents provided by a research project sponsored by the German Research Association (DFG), i.e. the "Data Handbook on the History of German Education: Vol. V: The German Vocational School System, 1815-1945". Special emphasis is placed upon the relation between the classification which evolved during the 1930s, the increase in functions served by the vocational schools, and their interconnection with the system of degrees and entitlements of the general schools. (DIPF/Orig.

    The Dagstuhl Beginners Guide to Reproducibility for Experimental Networking Research

    Get PDF
    © Owner/Author | ACM 2019 This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM SIGCOMM Computer Communication Review, http://dx.doi.org/10.1145/3314212.3314217.Reproducibility is one of the key characteristics of good science, but hard to achieve for experimental disciplines like Internet measurements and networked systems. This guide provides advice to researchers, particularly those new to the field, on designing experiments so that their work is more likely to be reproducible and to serve as a foundation for follow-on work by others.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    Simulation of Guided Waves in Cylinders Subject to Arbitrary Boundary Conditions Using the Scaled Boundary Finite Element Method

    Get PDF
    The scaled boundary finite element method (SBFEM) excels as a tool for numerical analysis at particular problem setups where the analytical solution in the scaling direction can be exploited to improve computational efficiency by reducing the number of required degrees of freedom (DOF). This is especially the case for simulating axisymmetric waveguides in the high-frequency range, allowing a significant decrease of computational costs (both memory and CPU time). Then, only the radial direction in a cylindrical coordinate system is discretized and the axial direction is solved analytically. A full threedimensional formulation is possible via the Fourier transform to include asymmetries. This contribution presents such an axisymmetric formulation, which is extended to allow the definition of circumferential as well as arbitrarily shaped dynamic boundary conditions (BCs). Furthermore, the required number of DOF depends on the frequency content. Hierarchical shape functions allow to dynamically adapt the DOF, further increasing efficiency. It will be shown that the results are in good agreement with standard finite element procedures, while greatly reducing computational time

    Inverse procedure for measuring piezoelectric material parameters using a single multi-electrode sample

    Get PDF
    An inverse measurement procedure for the determination of a full set of piezoelectric material parameters using a single sample is presented. The basis for the measurement procedure is a measurement of the frequency-dependent impedance of the sample. To yield sufficient sensitivity of this measurement with respect to all material parameters (mechanical, electrical, and coupling parameters), an optimal electrode configuration for the sample is determined before the inverse measurement procedure is realised using a novel topology optimisation approach. After initial estimates for the material parameters are provided by analytical expressions, a sensitivity-based, staged, local optimisation procedure yields material parameters for the sample by fitting the impedance of a finite element simulation model to the measured electrical impedance. Results for different absorption models as well as for different piezoelectric materials (hard, soft, and lead-free piezoceramics) are included.</p

    Messverfahren für die akustischen Absorption zur Bestimmung der Volumenviskosität reiner Fluide

    Get PDF
    A realistic description of fluid mechanical and acoustic processes requires the volume viscosity of the medium to be known. This work describes how the volume viscosity of pure fluids can be determined by measuring acoustic absorption with the pulse-echo method. The challenge in realizing such a measurement method lies in the separation of the different dissipative effects that superimpose on absorption. Diffraction effects ultimately cause a dissipation of acoustic energy and acoustic reflector surfaces have a small, but finite transmission coefficient. Further, influences of the transducer (in particular its frequency response), as well as the system’s electrical components have to be taken into account. In contrast to the classical approach relying on the amplitude ratio, the absorption is determined by the moments of the amplitude spectrum. The measurement system applied is originally designed for precision measurements of the sound velocity by means of the propagation time difference of two acoustic signals.Eine realitätsnahe Beschreibung strömungsmechanischer wie akustischer Vorgänge setzt voraus, dass die Volumenviskosität des Mediums bekannt ist. In diesem Beitrag wird gezeigt, wie sich die Volumenviskosität reiner Fluide über eine Messung der akustischen Absorption durch Puls-Echo-Messungen ermitteln lässt. Die Herausforderung bei der Realisierung eines derartigen Messverfahrens liegt in der Trennung der unterschiedlichen dissipativen Effekte, welche der Absorption im Fluid überlagert werden. Beugungseffekte endlich großer Schallwandler bedingen zum Beispiel eine Dissipation der akustischen Energie im Raum. Im Gegensatz zur klassischen Methode über das Amplitudenverhältnis, wird die Absorption über die Momente des Amplitudenspektrums bestimmt. Als Messsystem dient dabei ein Aufbau, welcher zur präzisen Messung der Schallgeschwindigkeit über die Laufzeitdifferenz zweier akustischer Signale ausgelegt ist

    Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence

    Get PDF
    Metal halide perovskites have emerged as exceptional semiconductors for optoelectronic applications. Substitution of the monovalent cations has advanced luminescence yields and device efficiencies. Here, we control the cation alloying to enhance optoelectronic performance through alteration of the charge carrier dynamics in mixed-halide perovskites. In contrast to single-halide perovskites, we find high luminescence yields for photoexcited carrier densities far below solar illumination conditions. Using time-resolved spectroscopy we show that the charge carrier recombination regime changes from second to first order within the first tens of nanoseconds after excitation. Supported by microscale mapping of the optical bandgap, electrically gated transport measurements and first-principles calculations, we demonstrate that spatially varying energetic disorder in the electronic states causes local charge accumulation, creating p- and n-type photodoped regions, which unearths a strategy for efficient light emission at low charge-injection in solar cells and light-emitting diodes

    MiKlip - a National Research Project on Decadal Climate Prediction

    Get PDF
    A German national project coordinates research on improving a global decadal climate prediction system for future operational use. MiKlip, an eight-year German national research project on decadal climate prediction, is organized around a global prediction system comprising the climate model MPI-ESM together with an initialization procedure and a model evaluation system. This paper summarizes the lessons learned from MiKlip so far; some are purely scientific, others concern strategies and structures of research that targets future operational use. Three prediction-system generations have been constructed, characterized by alternative initialization strategies; the later generations show a marked improvement in hindcast skill for surface temperature. Hindcast skill is also identified for multi-year-mean European summer surface temperatures, extra-tropical cyclone tracks, the Quasi-Biennial Oscillation, and ocean carbon uptake, among others. Regionalization maintains or slightly enhances the skill in European surface temperature inherited from the global model and also displays hindcast skill for wind-energy output. A new volcano code package permits rapid modification of the predictions in response to a future eruption. MiKlip has demonstrated the efficacy of subjecting a single global prediction system to a major research effort. The benefits of this strategy include the rapid cycling through the prediction-system generations, the development of a sophisticated evaluation package usable by all MiKlip researchers, and regional applications of the global predictions. Open research questions include the optimal balance between model resolution and ensemble size, the appropriate method for constructing a prediction ensemble, and the decision between full-field and anomaly initialization. Operational use of the MiKlip system is targeted for the end of the current decade, with a recommended generational cycle of two to three years

    Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area

    Get PDF
    Extreme precipitation is a weather phenomenon with tremendous damaging potential for property and human life. As the intensity and frequency of such events is projected to increase in a warming climate, there is an urgent need to advance the existing knowledge on extreme precipitation processes, statistics and impacts across scales. To this end, a working group within the Germany-based project, ClimXtreme, has been established to carry out multidisciplinary analyses of high-impact events. In this work, we provide a comprehensive assessment of the 29 June 2017 heavy precipitation event (HPE) affecting the Berlin metropolitan region (Germany), from the meteorological, impacts and climate perspectives, including climate change attribution. Our analysis showed that this event occurred under the influence of a mid-tropospheric trough over western Europe and two shortwave surface lows over Britain and Poland (Rasmund and Rasmund II), inducing relevant low-level wind convergence along the German–Polish border. Over 11 000 convective cells were triggered, starting early morning 29 June, displacing northwards slowly under the influence of a weak tropospheric flow (10 m s−1 at 500 hPa). The quasi-stationary situation led to totals up to 196 mm d−1, making this event the 29 June most severe in the 1951–2021 climatology, ranked by means of a precipitation-based index. Regarding impacts, it incurred the largest insured losses in the period 2002 to 2017 (EUR 60 million) in the greater Berlin area. We provide further insights on flood attributes (inundation, depth, duration) based on a unique household-level survey data set. The major moisture source for this event was the Alpine–Slovenian region (63 % of identified sources) due to recycling of precipitation falling over that region 1 d earlier. Implementing three different generalised extreme value (GEV) models, we quantified the return periods for this case to be above 100 years for daily aggregated precipitation, and up to 100 and 10 years for 8 and 1 h aggregations, respectively. The conditional attribution demonstrated that warming since the pre-industrial era caused a small but significant increase of 4 % in total precipitation and 10 % for extreme intensities. The possibility that not just greenhouse-gas-induced warming, but also anthropogenic aerosols affected the intensity of precipitation is investigated through aerosol sensitivity experiments. Our multi-disciplinary approach allowed us to relate interconnected aspects of extreme precipitation. For instance, the link between the unique meteorological conditions of this case and its very large return periods, or the extent to which it is attributable to already-observed anthropogenic climate change.</p
    • …
    corecore