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Abstract. The scaled boundary finite element method (SBFEM) excels as a tool for numerical analysis
at particular problem setups where the analytical solution in the scaling direction can be exploited to
improve computational efficiency by reducing the number of required degrees of freedom (DOF). This
is especially the case for simulating axisymmetric waveguides in the high-frequency range, allowing a
significant decrease of computational costs (both memory and CPU time). Then, only the radial direction
in a cylindrical coordinate system is discretized and the axial direction is solved analytically. A full three-
dimensional formulation is possible via the Fourier transform to include asymmetries. This contribution
presents such an axisymmetric formulation, which is extended to allow the definition of circumferential
as well as arbitrarily shaped dynamic boundary conditions (BCs). Furthermore, the required number of
DOF depends on the frequency content. Hierarchical shape functions allow to dynamically adapt the
DOF, further increasing efficiency. It will be shown that the results are in good agreement with standard
finite element procedures, while greatly reducing computational time.

1 INTRODUCTION

Ultrasound simulations of soft materials such as polymers usually require a large number of DOF to
properly capture the displacement solution when using standard FEM applications. This comes at the
detriment of memory usage and computation times and is especially difficult to handle given long struc-
tures or unbounded domains. For such applications, the SBFEM has been proven a useful tool solving
linear elastic problems in the frequency domain [1, 3].

When considering an axisymmetric domain along a cylindrical coordinate system, only the radial direc-
tion is discretized whereas an analytical solution is considered in the axial direction. Such a model can be
extended in the SBFEM to include asymmetries in BCs allowing a full three-dimensional description of
the problem by using concepts of the Fourier FEM. Then, the system is approximated w.r.t. the circum-
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ference by a truncated Fourier series and solved for each spatial frequency. Likewise, such a dynamic
asymmetric BC must then be transformed, both in time and space. An arbitrarily shaped BC can vary
with the radius and circumference and as such must be sampled at several distinct radii and transformed
individually while still retaining computational efficiency.

In this paper, we briefly introduce the SBFEM for cylindric domains leading to the dynamic stiffness
matrix. Subsequently, we present the preprocessing for applying an arbitrarily spatially varying BC;
especially in the context of hierarchical shape functions. We verify the proposed approach by comparison
with a finite element-model and demonstrate that a significant speed-up can be achieved for dynamic
simulations.

2 THE SBFEM FORMULATION

A short summary of the cylindric SBFEM formulation is presented here. The displacement-strain rela-
tionship is decomposed into its constituent differentials and processed individually

εεεεεεεεε= LLLLLLLLLuuuuuuuuu = bbbbbbbbb1∂zuuuuuuuuu+
1
r

bbbbbbbbb2∂θ uuuuuuuuu+bbbbbbbbb3∂ruuuuuuuuu+
1
r

bbbbbbbbb4uuuuuuuuu = BBBBBBBBB1∂zûuuuuuuuu+BBBBBBBBB2ûuuuuuuuu , (1)

which leads to matrices BBBBBBBBB1 and BBBBBBBBB2 given polar number m (circumferential frequency), additionally using
a discretization with the matrix of shape functions NNNNNNNNN for the discrete displacement vector ûuuuuuuuu [2]:

BBBBBBBBB1 = bbbbbbbbb1NNNNNNNNN and BBBBBBBBB2 =
1
r
(imbbbbbbbbb2 +bbbbbbbbb4)NNNNNNNNN+

2
h

bbbbbbbbb3∂ηNNNNNNNNN , m ∈N0 . (2)

Applying the principle of virtual work leads to the coefficient matrices EEEEEEEEE0, EEEEEEEEE1, EEEEEEEEE2, and MMMMMMMMM0

EEEEEEEEE0 =
∫ +1

−1
BBBBBBBBBH

1 DDDDDDDDDBBBBBBBBB1|JJJJJJJJJ|dη , EEEEEEEEE1 =
∫ +1

−1
BBBBBBBBBH

2 DDDDDDDDDBBBBBBBBB1|JJJJJJJJJ|dη , EEEEEEEEE2 =
∫ +1

−1
BBBBBBBBBH

2 DDDDDDDDDBBBBBBBBB2|JJJJJJJJJ|dη , (3a)

MMMMMMMMM0 = ρ

∫ +1

−1
NNNNNNNNNHNNNNNNNNN|JJJJJJJJJ|dη (3b)

in the following partial differential equation:

EEEEEEEEE0∂zzûuuuuuuuu+(EEEEEEEEEH
1 −EEEEEEEEE1)∂zûuuuuuuuu−EEEEEEEEE2ûuuuuuuuu−MMMMMMMMM0∂tt ûuuuuuuuu = 0 ⇒ [λ 2EEEEEEEEE0 +λ (EEEEEEEEEH

1 −EEEEEEEEE1)−EEEEEEEEE2−ω
2MMMMMMMMM0] ûuuuuuuuu = 0 , (4)

which can be solved in the frequency domain with angular frequencies ω for eigenvalues λ . Likewise,
the coefficient matrix ZZZZZZZZZ with

ZZZZZZZZZ(m,ω) =

[
EEEEEEEEE−1

0 EEEEEEEEEH
1 −EEEEEEEEE−1

0

ω2MMMMMMMMM0 +EEEEEEEEE1EEEEEEEEE−1
0 EEEEEEEEEH

1 −EEEEEEEEE2 −EEEEEEEEE1EEEEEEEEE−1
0

]
(5)

can be derived, leading to the ordinary matrix differential equation and its general solution [2]

∂zφφφφφφφφφ(z) =−ZZZZZZZZZφφφφφφφφφ(z) ⇒ φφφφφφφφφ(z) = ΨΨΨΨΨΨΨΨΨeΛΛΛΛΛΛΛΛΛzccccccccc with φφφφφφφφφ(z) =

[
ûuuuuuuuu(z)
q̂qqqqqqqq(z)

]
(6)

to the eigenvalue problem −ZZZZZZZZZΨΨΨΨΨΨΨΨΨ = ΨΨΨΨΨΨΨΨΨΛΛΛΛΛΛΛΛΛ. Here, ΨΨΨΨΨΨΨΨΨ is the eigenvector matrix associated with the diagonal
eigenvalue matrix ΛΛΛΛΛΛΛΛΛ, and ccccccccc is the vector of integration constants. Partitioning the solution in Eq. (6)
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leads to the dynamic stiffness matrix of a bounded domain of arbitrary length L [3] of a solid or hollow
cylinder

SSSSSSSSSL(m,ω) =

[
−ΨΨΨΨΨΨΨΨΨqp −ΨΨΨΨΨΨΨΨΨqne−ΛΛΛΛΛΛΛΛΛnL

ΨΨΨΨΨΨΨΨΨqpeΛΛΛΛΛΛΛΛΛpL ΨΨΨΨΨΨΨΨΨqn

][
ΨΨΨΨΨΨΨΨΨup ΨΨΨΨΨΨΨΨΨune−ΛΛΛΛΛΛΛΛΛnL

ΨΨΨΨΨΨΨΨΨupeΛΛΛΛΛΛΛΛΛpL ΨΨΨΨΨΨΨΨΨun

]−1

, (7)

which is given for each combination of ω and m and defines the relationship between displacements and
external forces at the opposing cylinder faces:[

p̂pppppppp(m,ω)|z=0

p̂pppppppp(m,ω)|z=L

]
= SSSSSSSSSL(m,ω)

[
ûuuuuuuuu(m,ω)|z=0

ûuuuuuuuu(m,ω)|z=L

]
. (8)

Boundary conditions may then be prescribed along the discretized flat surfaces either at z = 0 or z = L
and the linear equation system in Eq. (8) solved as per usual.

3 ARBITRARILY SHAPED BOUNDARY CONDITION

Given that the stiffness matrix and consequently the system of linear equations is solved in the frequency
domain, any dynamic BC with an asymmetric circumferential distribution must be similarly Fourier
transformed F(m,ω) = F ( f (θ , t)). In the trivial case, the distribution of a BC may be assumed to have
following property:

f (r,θ , t) = f (r) · f (θ) · f (t) , (9)

which allows to individually perform a one-dimensional Fourier transform of f (θ) and f (t), respec-
tively,1 as well as integration along the radius in the case of distributed loads. In contrast, arbitrarily
shaped BCs lose the independency of r and θ given

f (r,θ , t) = f (r,θ) · f (t) , (10)

introducing a relationship between the radial and circumferential distribution, i.e. an arbitrarily shaped
distribution on the flat cylinder surface. It then becomes necessary to sample such a distribution along
multiple concentric circles with varying radii rj to correctly discretize and transform it:

F(rj,m) =
1

2π

∫ 2π

0
f (rj,θ) · e−imθ dθ , m ∈N0 . (11)

Each concentric distribution is independently Fourier-transformed to finally assemble the vector of dis-
crete values for a particular polar number m (and angular frequency ω):

f̂ffffffff =
[

f̂1 . . . f̂j . . . f̂n
]T with f̂j = F(rj,m) ·F(ω) . (12)

The radii rj are chosen to coincide with the position of nodes if the discretization is based on shape func-
tions that possess the Kronecker delta property. It may also be necessary to select the integration points,
instead, depending on the integration scheme for loads. However, using hierarchical shape functions, a
more involved process is required, as the discrete values are not related to physical positions but rather
represent the amplitude spectrum of the polynomial basis functions and hence require conversion. Then,

1Due to symmetry reasons, the number of coefficients for which the system must be solved is halved, not quartered.
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(a) (b)

Figure 1: The displacement solution to the static case for a Neumann boundary condition demonstrates
the error comparing an insufficient equidistant sampling (a) and ”well-behaved” sampling using Gauss-
Lobatto-Legendre points (b).

the choice of rj is not trivial and can introduce errors in the approximation and therefore the solution.
These errors are expressed as edge effects which originate in Runge’s phenomenon (as circumvented by
spectral elements) and especially occur using equidistant positions [2, 4]; additionally, these amplifica-
tions of interpolated values are smeared along the circumference due to the Fourier transform, cf. Fig. 1a
and Fig. 1b. As such, an adequate choice of radii rj is required.

It was found that when Lobatto polynomials (up to order p) are used as the near-orthogonal basis func-
tions, with

Nk(η) =



1
2
(1−η) , k = 0

1
2
(1+η) , k = 1√
2k−1

2

∫
η

−1
Lk−1(ζ )dζ , k ∈ [2, p]

(13)

(here, Lk−1 refers to the Legendre polynomials), then likewise Gauss-Lobatto-Legendre points provide
a good choice to circumvent Runge’s phenomenon and minimize the approximation error. A mapping
between the physical domain and the polynomial coefficient space can be constructed by evaluating the
Lobatto polynomials at local coordinates η j that correspond to rj with n = p+1

N̂NNNNNNNN =


N1(η1) . . . Nk(η1) . . . Nn(η1)

...
...

...
N1(η j) . . . Nk(η j) . . . Nn(η j)

...
...

...
N1(ηn) . . . Nk(ηn) . . . Nn(ηn)

 , (14)

and subsequently inverting the matrix N̂NNNNNNNN:

f̂ffffffff(m) = N̂NNNNNNNN
−1

F(rrrrrrrrr,m) , rrrrrrrrrT =
[
r1 . . . rj . . . rn

]
. (15)
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Figure 2: Geometry of hollow cylinder. Load is
applied on ellipse area. Displacements uz are fixed
at the base. Sample point of interest is indicated in
point A with r = 1.05mm and θ = 1°.

Figure 3: Dynamic response uz of FEM (�) and
SBFEM (#) in point A shown in Fig. 2.

The matrix N̂NNNNNNNN is not strictly required to be a square matrix, however, undersampling is not recommended.
In case of oversampling, the pseudoinverse must necessarily be applied. When external forces are pre-
scribed, additional pre-integration of shape functions is necessary to assemble a Neumann BC:

p̂pppppppp =

(∫ +1

−1
NNNNNNNNNHNNNNNNNNN|JJJJJJJJJ|dη

)
f̂ffffffff . (16)

This concludes the application of arbitrarily shaped BCs.

4 NUMERICAL EXAMPLE

The following example is chosen to demonstrate the application of an arbitrarily shaped BC. The area of
effect is confined to a rotated ellipse placed on the top surface of a cylinder. A Neumann BC is applied
given a parabolic distribution around the center of the ellipse in the local coordinate system (R,ϕ), see
Fig. 2. The following Gauss-modulated sine function is chosen as the dynamic signal:

f (t) = sin(2π ·1MHz · t) · exp

(
−1

2

[
t−3µs
0.5µs

]2
)
· (1GPa) . (17)

Additionally, displacements in z are fixed at the bottom. The displacements are evaluated at z = 0.5mm
and the L2-norm is applied to compute the overall deviation averaged in space and time. As reference the
solution aquired by Ansys 2019 R2 is chosen using implicit time integration. There, the mesh is defined
by an average element size of 0.1mm (roughly 10 elements in r,z and 128 elements in θ ), and a time step
of 0.04 µs with a time window of interest of 6 µs. For the convergence study, each value is halved for a
total of four simulations. The SBFEM model, on the other hand, requires only a minimum and maximum
number of 15 and 17 DOF per discretized edge, respectively, to reach a precision comparable to the
reference. Here, we apply an adaptive algorithm to automatically pick the number of DOF depending
on the current frequencies ω and m, maintaining a predefined error. However, the minimum number is
increased to properly capture the BC.

Selecting 5289 unique Fourier coefficients to compute the solution, a computing time of 89.4s is re-
quired and yields a speedup of over 2000 compared to the third Ansys solution (mesh size: 0.025 mm,
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(a) (b)

Figure 4: Convergence behavior of FEM (a) using h-refinement and SBFEM (b) using p-refinement for
2952 (�), 4428 (�), and 5289 ( ) Fourier coefficients. Computation times are indicated. Both solutions
use a fourth FEM simulation as reference (with roughly seven weeks computation time).

time step: 0.01 µs). Relative differences of 0.8684%, 0.9107%, and 0.8369% in r, θ , and z, respectively,
can be found between the methods. Figure 3 shows the dynamic response in uz at the single point indi-
cated in Fig. 2, which possesses the largest relative deviation of all sample points with 0.8090 % for the
simulated time frame. As can be seen, the solutions are in very good agreement.

A more thorough comparison is difficult because errors are not only introduced due to discretization
but also due to truncation of the Fourier series. This interplay of approximation errors becomes evident
when the convergence for different sets of Fourier coefficients is plotted. For this case, we opt to adapt
the previously mentioned algorithm such that fewer than the minimum required DOF (due to the BC)
is allowed. (This explains differences in computation times, even though results still match very well.)
As can be seen, proper convergence behavior strongly depends on the number of Fourier coefficients for
which the system is solved, see Fig. 4. This analysis primarily regards model behavior in the physical
domain (including both time and space) and shows that the model requires not only a fine enough dis-
cretization but also enough information in the frequency domain to capture the solution well enough in
the physical domain.

5 CONCLUSION

In this contribution, the cylindric SBFEM was presented and arbitrarily shaped BC were incorporated. It
was demonstrated that the formulation gives good results while requiring only a fraction of the computing
time of conventional FEM applications.

Acknowledgement Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
409779252.

6



Dominik Itner, Hauke Gravenkamp, Dmitrij Dreiling, Nadine Feldmann and Bernd Henning

REFERENCES

[1] Song, C. and Wolf, J. P. The scaled boundary finite-element method—alias consistent infinitesimal
finite-element cell method—for elastodynamics. Computer Methods in Applied Mechanics and En-
gineering (1997) 147(3):329–355.

[2] Gravenkamp, H. and Birk, C. and Song, C. The computation of dispersion relations for axisymmet-
ric waveguides using the Scaled Boundary Finite Element Method. Ultrasonics (2014) 54(5):1373–
1385.

[3] Gravenkamp, H. and Birk, C. and Song, C. Simulation of elastic guided waves interacting with
defects in arbitrarily long structures using the Scaled Boundary Finite Element Method. Journal of
Computational Physics (2015) 295:438–455.

[4] Vu, T.H. and Deeks, A.J. Use of higher-order shape functions in the scaled boundary finite element
method. Int. J. Numer. Methods Eng. (2006) 65(10):1714–1733.

7


	INTRODUCTION
	THE SBFEM FORMULATION
	ARBITRARILY SHAPED BOUNDARY CONDITION
	NUMERICAL EXAMPLE
	CONCLUSION

