392 research outputs found

    Theoretical Investigation of Carrier-selective Contacts Featuring Tunnel Oxides by Means of Numerical Device Simulation

    Get PDF
    AbstractRecently, a variety of different n-type Si solar cells with carrier-selective contacts featuring tunnel oxides achieving remarkable cell results has been presented. Theoretical investigations on this topic are rare, especially simulations actually accounting for tunneling through the oxide interlayer. In this work we investigate the influence of different parameters affecting the passivation quality and thus the device performance by means of numerical device simulation. Thereby, a fundamental understanding of solar cells with carrier-selective contacts featuring tunnel oxides is generated which is essential to further develop this promising technology

    Eta-nucleon coupling constant in QCD with SU(3) symmetry breaking

    Full text link
    We study the η\etaNN coupling constant using the method of QCD sum rules starting from the vacuum-to-eta correlation function of the interpolating fields of two nucleons. The matrix element of this correlation has been taken with respect to nucleon spinors to avoid unwanted pole contribution. The SU(3)-flavor symmetry breaking effects have been accounted for via the η\eta-mass, s-quark mass and eta decay constant to leading order. Out of the four sum rules obtained by taking the ratios of the two sum rules in conjunction with the two sum rules in nucleon mass, three are found to give mutually consistent results. We find the SU(3) breaking effects significant, as large as 50% of the SU(3) symmetric part.Comment: 13 pages, 12 figure

    Content-aware Traffic Engineering

    Get PDF
    Also appears as TU-Berlin technical report 2012-3, ISSN: 1436-9915Also appears as TU-Berlin technical report 2012-3, ISSN: 1436-9915Today, a large fraction of Internet traffic is originated by Content Providers (CPs) such as content distribution networks and hyper-giants. To cope with the increasing demand for content, CPs deploy massively distributed infrastructures. This poses new challenges for CPs as they have to dynamically map end-users to appropriate servers, without being fully aware of network conditions within an ISP as well as the end-users network locations. Furthermore, ISPs struggle to cope with rapid traffic shifts caused by the dynamic server selection process of CPs. In this paper, we argue that the challenges that CPs and ISPs face separately today can be turned into an opportunity. We show how they can jointly take advantage of the deployed distributed infrastructures to improve their operation and end-user performance. We propose Content-aware Traffic Engineering (CaTE), which dynamically adapts the traffic demand for content hosted on CPs by utilizing ISP network information and end-user location during the server selection process. As a result, CPs enhance their end-user to server mapping and improve end-user experience, thanks to the ability of network-informed server selection to circumvent network bottlenecks. In addition, ISPs gain the ability to partially influence the traffic demands in their networks. Our results with operational data show improvements in path length and delay between end-user and the assigned CP server, network wide traffic reduction of up to 15%, and a decrease in ISP link utilization of up to 40% when applying CaTE to traffic delivered by a small number of major CPs

    Optical and electrical characterization of poly-Si/SiOx contacts and their implications on solar cell design

    Get PDF
    Abstract The scope of this paper lies on the phenomenon of free-carrier absorption (FCA) in heavily phosphorus-doped poly-Si layers, applied at solar cells featuring poly-Si/SiO x passivating contacts at the rear. Firstly, FCA is investigated on test structures featuring poly-Si contacts of different thickness and doping level. Secondly, these passivating contacts are integrated into the rear of solar cells featuring a boron-diffused emitter at the front. The infrared (IR) response of the solar cells is analyzed and FCA losses are quantified. In agreement with theory, it is shown that J sc losses due to FCA increase with poly-Si doping level and thickness. For instance, a total J sc loss of ~0.5 mA/cm² is obtained for a 145 nm thick poly-Si layer with a doping concentration of 1.9x10 20 cm -3

    Impact of synthesis conditions on the morphology and crystal structure of tungsten nitride nanomaterials

    Get PDF
    Nanocrystalline tungsten nitride (WNx_{x}) aggregates and nanosheets are synthesized with a new alkylamine-based synthesis strategy for potential applications in nanoelectronics and catalysis. These applications preferentially require crystalline materials with controlled morphology, which has been rarely demonstrated for WNx_{x} nanomaterials in the past. In the synthesis approach presented in this work, the morphology of nanoscale WNx_{x} is controlled by long-chained amines that form lyotropic or lamellar phases depending on the surfactant concentration. The structural and chemical properties of the WNx_{x} nanomaterials are studied in detail using different electron microscopic techniques in combination with electron spectroscopic analyses. Material synthesis and sample preparation for transmission electron microscopy (TEM) were performed in an argon atmosphere (Schlenk line and glovebox). The samples were inserted into the electron microscope via an air-tight TEM transfer holder to protect the material from hydrolysis and oxidation. From the lyotropic phase nanocrystalline WNx_{x} aggregates were obtained, which consist of 2.4 ± 0.8 nm small crystallites of the cubic WNx_{x} phase with a composition of WN0.7_{0.7}. The lamellar phase with a higher surfactant concentration yields WNx nanosheets with lateral dimensions up to 500 nm and a mean thickness of 2.1 ± 1.1 nm. The nanosheets are N rich with a composition WN1.73.7_{1.7–3.7} and occur in the hexagonal crystal structure. The nanosheets are often stacked on top of one another with frequent rotations of 4–6° around the hexagonal c axis, thereby forming commensurate interface structures between nanosheets. High stacking-fault densities and signs of nanotwins can be repeatedly observed in WNx_{x} nanosheets

    High-precision isotopic analysis sheds new light on mercury metabolism in long-finned pilot whales (Globicephala melas)

    Get PDF
    Eduardo Bolea-Fernandez acknowledges BOF-UGent for his postdoctoral grant. We acknowledge Arnout Laureys for his support, Jonas Kunigkeit and Magali Perez for isolation of HgSe particles, and Dr. Andrew Brownlow for given access to the Pilot Whale samples.Peer reviewedPublisher PD

    Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives

    Get PDF
    This feature article discusses the optical trapping and manipulation of plasmonic nanoparticles, an area of current interest with potential applications in nanofabrication, sensing, analytics, biology and medicine. We give an overview over the basic theoretical concepts relating to optical forces, plasmon resonances and plasmonic heating. We discuss fundamental studies of plasmonic particles in optical traps and the temperature profiles around them. We place a particular emphasis on our own work employing optically trapped plasmonic nanoparticles towards nanofabrication, manipulation of biomimetic objects and sensing

    Optical and Electronic Properties of Pyrite Nanocrystal Thin Films: the Role of Ligands

    Get PDF
    Pyrite nanocrystals are currently considered as a promising material for large scale photovoltaic applications due to their non toxicity and large abundance. While scalable synthetic routes for phase pure and shape controlled colloidal pyrite nanocrystals have been reported, their use in solar cells has been hampered by the detrimental effects of their surface defects. Here, we report a systematic study of optical and electronic properties of pyrite nanocrystal thin films employing a series of different ligands varying both the anchor and bridging group. The effect of the ligands on the optical and electronic properties is investigated by UV vis NIR absorption spectroscopy, current voltage characteristic measurements and surface photovoltage spectroscopy. We find that the optical absorption is mainly determined by the anchor group. The absorption onset in the thin films shifts up to 100 meV to the red. This is attributed to changes in the dielectric environment induced by different anchors. The conductivity and photoconductivity, on the other hand, are determined by combined effects of anchor and bridging group, which modify the effective hopping barrier. Employing different ligands, the differential conductance varies over four orders of magnitude. The largest redshift and differential conductance are observed for ammonium sulfides and thiolated aromatic linkers. Pyridine and long chain amines, on the other hand, lead to smaller modifications. Our findings highlight the importance of surface functionalization and interparticle electronic coupling in the use of pyrite nanocrystals for photovoltaic device

    Parameterized Complexity of Asynchronous Border Minimization

    Full text link
    Microarrays are research tools used in gene discovery as well as disease and cancer diagnostics. Two prominent but challenging problems related to microarrays are the Border Minimization Problem (BMP) and the Border Minimization Problem with given placement (P-BMP). In this paper we investigate the parameterized complexity of natural variants of BMP and P-BMP under several natural parameters. We show that BMP and P-BMP are in FPT under the following two combinations of parameters: 1) the size of the alphabet (c), the maximum length of a sequence (string) in the input (l) and the number of rows of the microarray (r); and, 2) the size of the alphabet and the size of the border length (o). Furthermore, P-BMP is in FPT when parameterized by c and l. We complement our tractability results with corresponding hardness results
    corecore