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ABSTRACT

Today, a large fraction of Internet traffic is originated bgr@ent
Providers (CPs) such as content distribution networks amperh
giants. To cope with the increasing demand for content, @Ps d
ploy massively distributed infrastructures. This posew ©chal-

lenges for CPs as they have to dynamically map end-users-to ap

propriate servers, without being fully aware of network ditions
within an ISP as well as the end-users network locationsthEr
more, ISPs struggle to cope with rapid traffic shifts causgthie
dynamic server selection process of CPs.

In this paper, we argue that the challenges that CPs and ISP

face separately today can be turned into an opportunity. We s
how they can jointly take advantage of the deployed disteithin-
frastructures to improve their operation and end-usemoperdnce.
We proposeéContent-aware Traffic Engineerif@aTE), which dy-
namically adapts the traffic demand for content hosted onlyPs
utilizing ISP network information and end-user locatiomidg the
server selection process. As a result, CPs enhance theinsamd
to server mapping and improve end-user experience, thartket
ability of network-informed server selection to circumvertwork
bottlenecks. In addition, ISPs gain the ability to parjiafifluence
the traffic demands in their networks. Our results with openal
data show improvements in path length and delay betweenised-
and the assigned CP server, network wide traffic reductiapdab
15%, and a decrease in ISP link utilization of up4t@ when ap-
plying CaTE to traffic delivered by a small number of major CPs.

1. INTRODUCTION

People value the Internet for the content it makes availi@dp
For example, the demand for online entertainment and webaro
ing has exceeded 70% of the peak downstream traffic in theetnit
States|[34]. Recent traffic studigs [27, 40! 52] show thatrgela
fraction of Internet traffic is originated by a small numbéiGon-
tent Providers (CPs). Major CPs are highly popular rich medi
sites like YouTube and Netflix, One-Click Hosters (OCHsY.e.
RapidShare or MegaUpload, as well as Content Delivery Niksvo
(CDN) such as Akamai or Limelight and hyper-giants, e. go@e,
Yahoo! or Microsoft. Gerber and Doverspike [27] report thégw
CPs account for more than half of the traffic of a US-based- Tier
1 carrier. Poese et al. [52] report a similar observatiomftbe
traffic of a European Tier-1 carrier. Labovitz et al. [40]enthat
more than 10% of the total Internet inter-domain traffic ovages
from Google, and Akamai claims to deliver more than 20% of the
total Web traffic in the Internet [50]. In North America, Nétfls
responsible for around 30% of the traffic during peak hdud$
offering a high definition video streaming service hostedo@iN
infrastructures such as Limelight and the CDN operated el3e

To cope with the increasing demand for content, CPs deploy
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massively distributed server infrastructured [42] toiegik content
and make it accessible from different locations in the m€{62,

2]. For example, Akamai operates more tHn 000 servers in
more tharb, 000 locations across nearlly, 000 networks [42[ 50].
Google is reported to operate tens of data-centers and-dranht
server clusters worldwide [39, 61]. Microsoft has deployed
CDN infrastructure in 24 locations around the world|[33]. &m
zon maintains at least 5 large data-centers and cachesgasatal
locations around the world [55]. Limelight operates thawsaof

servers in more than 22 delivery centers and connects lirect

gmore than 900 networks worldwide [49].

The growth of demand for content and the resulting deplogymen
of content delivery infrastructures pose new challeng&sRe and
to ISPs. For CPs, the cost of deploying and maintaining such a
massive infrastructure has significantly increased dutireglast
years [[58] and the revenue from delivering traffic to endrsibas
decreased due to the intense competition. FurthermorestoRs
gle to engineer and manage their infrastructures, replicantent
based on end-user demand, and assign users to appropnegesse

The latter is challenging as end-user to server assignmbasied
on inaccurate end-user location informationl/[47, 12], arfdrring
the network conditions within an ISP without direct inforiioa
from the network is difficult. Moreover, due to highly digted
server deployment and adaptive server assignment, tHie tiraf
jected by CPs is volatile. For example, if one of its locasias
overloaded, a CP will re-assign end-users to other locsiti@sult-
ing in large traffic shifts in the ISP network within minute&3urrent
traffic engineering by ISP networks adapts the routing aredaips
on time scales of several hours, and is therefore too sloeetct to
rapid traffic changes caused by CPs.

The pressure for cost reduction and customer satisfactian t
both CPs and ISPs are confronted with, coupled with the eppor
tunity that distributed server infrastructures offer, ivate us to
propose a new tool in the traffic engineering landscape. ve-in
duceContent-aware Traffic Engineerif@aTE). CaTE leverages
the location diversity offered by CPs and, through this|ldves to
adapt to traffic demand shifts. In fa@aTE relies on the observa-
tion that by selecting an appropriate server among thoséabie
to deliver the content, the path of the traffic in the netwaak be
influenced in a desired way. Figure 1 illustrates the basncept
of CaTE. The content requested by the client is in principle avail-
able from three servers (A, B, and C) in the network. HowetVer,
client only connects to one of the network locations. Todhg,
decision of where the client will connect to is solely donethy
CP and is partially based on measurements and/or inferémed-o
work information and end-user location. WitaTE the decision
on end-user to server assignment can be done jointly bettieen
CP and ISP.
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Figure 1: By choosing a CP server for a client with the help of
CaTE, traffic engineering goals and accurate end-user server
assignment become possible.

CaTE complements the existing traffic engineering ecosystem
by focusing on traffic demands rather than routing, by coimbgin
(i) the knowledge of CPs about their location diversity asdver
load, with (ii) the ISPs detailed knowledge of the networkdie
tions and end-user locatiorCaTE offers additional traffic engi-
neering capabilities to ISPs to better manage the volatifitCP
traffic. Also, thanks to the information about ISP network®s
gain the ability to better assign end-users to their seredsbetter
amortize the cost of deploying and maintaining their intfniacture.
Furthermore, the burden of measuring and inferring netwapkl-
ogy and state is removed from the CPs. In short, all involed p
ties, including the end-users, benefit fra&@aTE, creating a win-
win situation for everyone. Our contributions are as fokow

e We introduce the concept @faTE.

schemes of systems to realiZaTE.

servers foilCaTE and discuss its properties.
We evaluate the performance GATE using real data from
a European Tier-1 ISP. We show tl@aTE can improve the

and high definition video streaming such as Netflix or YouTube
mostly carried over HTTP. Recent studies unveil that HTTR-co
tributes more than 60% of Internet traffic [3./ 17! 27, [34,[4), 4

Moreover, CPs peer directly with a large number of ISPs and in
many locations. For scalability reasons, most CPs makeothient
available from all their infrastructure locations [62]. &lobally
deployed infrastructures allow CPs to rapidly shift largecants
of traffic from one peering point to another. While the dieefsot-
print of CPs and the ability to shift traffic in short timesesposes
new challenges to both CPs and ISPs, it also offers new appert
ties for joint optimization of content delivery.

2.1 Challenges in Content Delivery

The scale and complexity of content delivery, especialtyrfr
distributed infrastructures, brings multiple challenge€Ps. These
challenges have a major impact on both the end-user penfmena
and ISP operation.

Content Delivery Cost. CPs strive to minimize the overall cost of
delivering huge amounts of content to end-users. To thatteed
assignment strategy is mainly driven by economic aspects as
bandwidth or energy cost [58, 28]. While a CP will try to assig
end-users in such a way that the server can deliver reasopabl
formance, this does not always result in end-users beirigress

to the server able to deliver the best performance. Moreaker
intense competition in the content delivery market has tedit
minishing returns of delivering traffic to end-users.

End-user Mis-location. End-user mapping requests received by
the CP DNS servers originate from the DNS resolver of the end-
user, not from the end-user itself. The assignment is thezdfased
on the assumption that end-users are close to their DNSvezsol

We present the design, incentives, and possible deploymentRecent studies have shown that in many cases this assurdptsn

not hold [1,[47]. As a result, the end-user is mis-located thed

We propose an online algorithm to map end-user requests to server assignment is not optimal. As a response, DNS extensi

have been proposed to include the end-user IP informati2jn [1
Network Bottlenecks. Despite their efforts to discover the paths
between the end-users and their servers to predict perfmesd32],

assignment of end-users to servers for a number of metrics, CPs have limited information about the actual network ctos.

namely, link utilization, path length and path delay. Our re
sults show that the maximum link utilization can be reduced
by half, especially during the peak hour, that the total-traf
fic that flows in the network can be reduced by up to 15%,
and the delay by 20% respectively when apply®@TE to

a small number of major CPs. Similar results are obtained
when evaluatin@CaTE on two other operational networks.

The remainder of this paper is structured as follows. Inisef

we present the observations that motivate our work. In 8e@ive
introduce our concept @aTE and present the general architecture
as well as possible deployment schemes. We formally defide an
modelCaTE in Sectior 4. We propose algorithms to enaB&TE

in Sectior 5. We evaluate the benefitsGHTE in Sectior{ 6 using
data from operational networks with different metrics, lirting
link utilization, path delay and length. We present relatenk in
Sectior Y and summarize in Sectidn 8.

2. CHALLENGES AND OPPORTUNITIES IN
CONTENT DISTRIBUTION

With the emergence of “hyper-giants” and other popular CPs,
the traffic of the Internet has undergone drastic changds T4@se
changes stem from trends in business and organizatioegratton

Tracking the ever changing network conditions, i.e., tigioac-
tive measurements and end-user reports, incurs an extengv-
head for the CP without a guarantee of performance impromtsne
for the end-user. Without sufficient information about tie¢work
paths between the CP servers and the end-user, an assigrenent
formed by the CP can lead to additional load on existing ngtwo
bottlenecks, or create new ones.

End-user Performance. Applications delivered by CPs often have
requirements in terms of end-to-end delay|[39]. Moreovaster
and more reliable content delivery results in higher reesrfor e-
commerce applications [50] as well as user engagerneht [1&].
spite the significant efforts of CPs, end-user mis-locatiod the
limited view of network bottlenecks are major obstaclesnpriove
end-user performance.

2.2 Opportunities for caTe

The idea behindCaTE is to provide solutions for the new chal-
lenges in content delivery. Indeed, ISPs are in a uniquetiposi
both in terms of knowledge as well as incentives, to imprave-c
tent delivery. ISPs have the knowledge about the state ofithe
derlying network topology and the status of individual BnkT his
information not only helps CPs in their user-to-server niagpout
also reduces the need for CPs to perform large-scale actaae m

and consolidation. As a consequence, a small number of @GPs ar surements and topology discovery[32]. It also enables GBstt

responsible for a large fraction of traffic [27./52]. Contdativered
by CPs, including highly popular rich media sites like Fauab

ter amortize their existing infrastructure, offer betteatity of ex-
perience to their users, and postpone their infrastruexpansion.



The opportunity for ISPs to coordinate with CPs in their serv
selection is technically possible thanks to the decoupthghe
server selection from the content delivery. In general,emy-user
requesting content from a CP first does a mapping requestilyisu
through the Domain Name System (DNS). During this requesst th
CP needs to locate the network position of the end-user and as
sign a server capable of delivering the content, preferelolye to
the end-user. However, locating the user in a network aref-inf
ring the conditions of the path between the end-user anibkig
CP servers is hard as the CP is missing network informatian. |
contrast, ISPs have this information ready at their fingsrtbut
are currently missing a communication channel to informGRes.
Furthermore, ISPs face the challenge of predicting the &far
which is very difficult due to the lack of information on the pa
ping of end-users to server decided by CPs.

We propose to us€aTE during the server selection process of
CPs. In today’s CP deployment, the server selection is done d
rectly between the end-user and the CP without the involwntwie
the ISP (see arrow A in FiguEé 2). Throu@laTE, CPs are offered
the opportunity to optimize their server selection beydmelrtcur-
rent capabilities by communicating directly with the ISFPESP
Communication, see Figuké 2). Furthermore, ISPs gain thigyab
of adapting to the volatile traffic induced by content delydy be-
ing able to influence the choice of the CP. We believe @=lE is
a step forward in improving the end-user performance anblieng
ISP and CP collaboration.

2.3 Incentives

The opportunities thaCaTE enables for both CPs and ISPs re-
quire that both parties have incentives to work togethemtHenr
more, the growing awareness of end-users al@fE’s benefits
will accelerate the penetration 6faTE in a highly commoditized
content delivery market.

2.3.1 Incentives for CPs

The market of CPs requires them to enable new applications
while reducing their operational cost, and to improve the-eser
experiencel[50]. WitlCaTE improving the mapping of end-users
to servers, CPs can expect improvements in the end-useri-expe
ence, and thus, a competitive advantage. This is partlguilar
portant for CPs in light of the commoditization of the coritde-
livery market and the choice that is offered to end-usersexam-
ple through meta-CDNs [15]. The improved mapping also weld
better infrastructure amortization and thank€aTl E, CPs will no
longer have to perform and analyze voluminous measurenments
order to infer the network conditions or end-user locations

To stimulate the use ofaTE, ISPs can operate and provide
CaTE as a free service to CPs or even offer discounts on peer-
ing or hosting prices, e. g., for early adopters and CPs taise
a higher server diversity while usif@aTE. The loss of peering or
hosting revenue is amortized with the benefits of a lower&gark
utilization, reduced investments in network capacity egien and
by taking back some control over the traffic within the networ
Ma et al. [45] have developed a methodology to estimate ticer
in such a cooperative scheme by utilizing the Shapley setth
mechanism CaTE can also act as an enabler for CPs and ISPs to
jointly launch new applications in a cost-effective way, daample
traffic-intensive applications such as the delivery of hilgffinition
video on-demand, or real-time applications such as onlarees.

In an ISP-CP collaborative schent@aTE can play the role of a
recommendation system and is not intended to be appliedtanil
ally by the ISP.

—

b CaTE
<—

Content CP-ISP

Transfer e& Communpication
Selection

CP Infrastructure

CP Infrastructure

Figure 2: CaTE deployment and interaction with CPs.

2.3.2 Incentives for ISPs

ISPs are interested in reducing their operational andstrina-
ture upgrade costs, offering broadband services at cotivpetrices,
and delivering the best end-user experience possible. ®uett
work congestion during the peak hour, ISPs in North Amereaeh
recently revisited the flat pricing model and have annourcad
caps to broadband services. A better management of traffiein
network withCaTE can allow them to offer higher data caps or
even alleviate the need to introduce them. From an ISP perspe
tive, CaTE offers the possibility to do global traffic and peering
management, through an improved awareness of the trafficscr
the whole network. For example, peering agreements withc@Rs
offer the use ofCaTE in exchange for reduced costs to the CPs.
This can be an incentive for CPs to peer witEaTE-enable ISP
and an additional revenue for an ISP, as such reduced pacestc
tract additional peering customers. An ISP can also @f&fE to
other ISPs it peers with, which makes sense especially icdbe
that the peering ISPs hosts content or also acts as CP. Hradnt
tion and federation of CPs run by ISPs can also be enabledghro
CaTE. There is high interest on the side of ISPs, as reflected by
the creation of the IETF working group CDNi [44]. Furtherrapr
CaTE has the potential to reduce the significant overhead due to
the handling of customer complaints that often do not stemmfr
the operation of the ISP but the operation of CPs [8]. V@HTE,
ISPs can identify and mitigate congestion, and react ta shtur-
bances caused by an increased demand of content from CPs.

2.3.3 Incentives for end-users

CaTE offers a way to empower end-users to obtain the best pos-
sible quality of experience. As such, this creates an imoerior
end-users to support the adoptionGATE by both ISPs and CPs.
For example, an ISP can offer more attractive products,higher
bandwidth or lower prices, since it is able to better mandmge t
traffic inside its network. Also, thanks to better traffic eveper-
ing, ISPs can increase data caps on their broadband offaksngn
the ISP more attractive to end-users. Moreover, CPs thieuti
CaTE can offer better quality of experience to end-users. This ca
be done through premium services basedCaTE. For example,
CPs delivering streaming services can offer higher qualdgos to
end-users thanks to better server assignment and netwgirkeen-
ing. Also, applications running over the Internet can dyeagnefit
in their performance fronCaTE (see AppendikB). This, in turn,
gives end-users a good reason to chd@a&E enabled services.

3. cate APPROACH

The concept ofCaTE relies on two key observations. First,
a major fraction of the traffic in ISPs is delivered by maslyive
distributed CP infrastructures. Therefore, the same obm$eof-



ten available at different network locations with differemtwork
paths to the end-user. Second, the server selection of Gis is
coupled from the content transfer. Thus, it is possible naent
the server selection strategy of CPs with detailed infoionafrom
ISPs about the current network state, the status of linksate
traversed and the precise network location of the end-user.

3.1 Concept ofcaTE

CaTE relies on the fact that by selecting an appropriate server
among those being able to satisfy a request, the flow of traffic
within the network can be influenced. To illustrate the cqce
we show in Figuréll how, by selecting server A instead of B or C,
a shorter path through the network is chosen. However, CRs ha
limited knowledge about the path characteristics insidetavork.

On the other hand, ISPs are aware of the state of their network
the location of their users, as well as the path conditiore/éen
end-users and servers. Given the large fraction of traffit ahig-
inates from CPs and their highly distributed infrastruet@aTE

can shift traffic among paths within a network and, through, th
achieve traffic engineering goals for both CPs and the ISP.

3.2 caTE Deployment Schemes

Our main architectural motivation is that the server séecis
decoupled from the content transfer. In Figure 2 we providiema
plified version of how CPs handle content requests. Today, th
server selection process of CPs works as follows. When an end
user wants to obtain a specific content, it first sends a rétuése
CP server selectionf the CP (see Figuid 2A)). Today, there are
two prevalent techniques used to transfer this request: 8es
and HTTP redirection. Th€P server selectioselects the con-
tent server based on the requested content, the objecfittes GP,
its current view of the network, and its knowledge of the eisé+
network location. Finally, it returns the selected senRrdither
through a DNS reply or a HTTP redirection, to the end-useickvh
in turn establishes a connection to the supplied server towm-
load the content.

In order for CaTE to hook into the server selection of CPs, a
new component inside the ISPs network is needed. In genisl,

ward the request to the CP. The CP returns a list of potersiaess
andCaTE ranks them based on network characteristics and the cur-
rent path conditions between end-user and server netwoaltitm.

This can be implemented by utilizing the part of the DNS res-
olution process handled by CPs. When end-users query the ISP
DNS resolver and, in turn, the CP DNS server, the CP retuins al
candidate content servers, which are re-ordered by the IS8 D
resolvers according t6aTE.

3. ISP-based: The end-user contactsaTE directly (B) for the
mapping. HoweverCaTE forwards the request through tiaP-
ISP Communicatiorio the CP server selection, which returns the
normal reply as it happens todayaTE collects and aggregates the
replies from the CP and overwrites the replies using the kedge

it has obtained from past results.

This can be implemented by using the DNS resolution process
of CPs. When end-users query the ISP DNS resolver the ISP for-
wards the request. However, the answer from the CP is kept and
aggregated as proposed by Poese ef al. [52] and the DNSsreplie
are overwritten a€aTE sees fit.

4. User-based: The end-user collects the potential content servers
from the CP as well as the current network state from the I$P. B
utilizing this information, it calculates the best serverconnect

to based on active end-to-end measurements or previoysyteel
experience.

This can be achieved when both the CP and the ISP run the IETF
ALTO service or PaDIS. In this case, the client downloadstedl
needed information and performs the server selectiorf.itsel

In the first three schemé&3aTE can be incrementally deployed
and interacts with the existing CP infrastructures whilegérans-
parent to the end-user. In the collaborative schemes 1 atite2,
final decision is made by the CPs to avoid any disturbancean th
operation. The frequency of ranking exchanges as well agrtre
ularity of end-user location identification is up to the adistrator
of the system. It is also possible to provide end-users tloéceh
to opt-in or opt-out. CPs can also negotiate how many lonatio
they make available to ISPs. Note, CPs can dynamically ahang
the locations made available to the ISP depending on theaitdn
of each location. In the last deployment option, we deschibe

component offers an interface between the CP and the ISPtto ge CaTE can also be deployed at the end-user, e.g., via the browser

supplement information about the network position of esdrs,
path conditions between an end-user and eligible servers,Te
this end, the system uses information readily availablentéS#,
such as the actual network topology, routing informatiord-aser
assignment databases, current network loads, etc. Togktgnss
capable of providing the interface between an ISP and a CPare
example the IETF ALTO servicel[4] or the Provider-aided Bigte
information System (PaDIS) [52]. In Figuré 2 we outline thage

of possibleCaTE deployment schemes:

1. CP contacts ISP: The end-user contacts the CP server selection
module via its DNS resolvgiA) as it does today. When choosing
the server for the end-user, the CP uses3RelSP Communication
to retrieve information about the network status, topo)agya rec-
ommendation by the ISP based on the network conditions leetwe
the end-user and the candidate content servers. The ageanita
the recommendation option is that no party reveals any thensi
operational information.

This can be implemented by including the client IP in the map-
ping request as proposed at the IETF dnsext working group [12
while using the IETF ALTO protocol or PaDIS by the CP to re-
trieve topology information, network status informatiam,server
recommendation by the ISP.

2. ISP contacts CP: The end-user contac@aTE directly (B) for
the mapping. TherCaTE uses theCP-ISP Communicatioto for-

or home gateway, but the penetration will be slower as itiregu
the installation of software at the end-user.

4. MODELLING caTE

Next, we formalizeCaTE and discuss how it relates to tradi-
tional traffic engineering and multipath routing.

4.1 Traffic Engineering

We model the network as a directed gra@gtV, E) whereV is
the set of nodes andl is the set of links. An origin-destination
(OD) flow f,q4 consists of all traffic entering the network at a given
pointo € V (origin) and exiting the network at some poihe V'
(destination). The traffic on a link is the superposition bfGD
flows that traverse the link.

The relationship between link and OD flow traffic is expressed
by the routing matrixA. The matrixA has sizg | x |V'|?. Each
element of matrixA has a boolean valued,,; = 1 if OD flow
m traverses link, and0 otherwise. The routing matriX can be
derived from routing protocols, e.g., OSPF, ISIS, BGP. Ggfly,

A is very sparse since each OD flow traverses only a very small
number of links. Lety be a vector of sizéFE| with traffic counts

on links and a vector of siz¢V/|? with traffic counts in OD flows,
theny=Ax. Note,x is the vector representation of the traffic matrix.
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Figure 3: Content-aware Traffic Engineering Process

Traditional Traffic Engineering: In its broadest sense, traffic en-
gineering encompasses the application of technology aieth-sc
tific principles to the measurement, characterization, eting, and
control of Internet trafficl[5]. Traditionally, traffic engeering re-
duces to controlling and optimizing the routing functiondato
steering traffic through the network in the most effectivgwirans-
lated into the above matrix form, traffic engineering is thecess
of adjusting A, given the OD flowsx, so as to influence the link
traffic y in a desirable way, as coined [n [41]. The above definition
assumes that the OD flow vectoris known. For instance, direct
observations can be obtained, e. g., with Netflow ddta [9, 19]

Terminology: We denote aflow an OD flow between two routers
in the network. We call a flowgplittableif arbitrarily small pieces

of the flow can be assigned to other flows. This is not to be con-
fused with end-to-end sessions, i.e., TCP connections;hwiuie
un-splittable The assumption that flows are splittable is reason-
able, as the percentage of traffic of a single end-to-endogess
small compared to that of a flow between routers. Cdie the set

of nominal capacities of the links in the netwagk We denote as
link utilizationthe fraction of the link capacity that is used by flows.
We denote aflow utilizationthe maximum link utilization among
all links that a flow traverses. We introduce the termsaffic con-
sumerandtraffic producemwhich refer to the aggregated demand of
users attached to a router, and the CPs that are resporwititef
traffic respectively. Throughout this paper, we refer todtiierent
alternatives from which content can be supplied by a givera€P
network locationghat host servers.

4.2 Definition of caTE

We revisit traffic engineering by focusing on the traffic dewia
rather than changing the routing.
Definition 1: Content-aware Traffic Engineering(CaTE) is the
process of adjusting the traffic demand vectpigiven a routing
matrix A, so as to change the link traffjc

Not all the traffic can be adjusted arbitrarily. Only traffiar f
which location diversity is available can be adjusted @gTE.
Thereforex=x,+xs wherex, denotes the content demands that can

be adjusted and; denotes the content demands that can not be ad-

justed as there is only a single location in the network wlikee
content can be downloaded from. The amount of traffic thabean
adjusted depends on the diversity of locations from whiehcthn-
tent can be obtained. We can rewrite the relation betwedfictra
counts on links and traffic counts in flows as follows: A(xs +
Xr). CaTE adjusts the traffic on each link of the network by ad-
justing the content demands: y,=Ax,. Applying CaTE means
adjusting the content demand to satisfy a traffic engingegoal.
Definition 2: Optimal Traffic Matrix is the new traffic matrixg®,
after applyingCaTE, given a network topologgr, a routing matrix

A and an initial traffic matrix.

Figure[3 illustrates th€aTE process. A content consumer re-
quests content that three different servers can delivet.ukeas-
sume that, withou€aTE, the CP redirects the clients to servers B
and C. Unfortunately, the resulting traffic crosses a highllized
link. With CaTE, content can also be downloaded from server A,
thus, the traffic within the network is better balanced ashigaly
utilized link is circumvented.

Minimizing the maximum utilization across all links in a net
work is a popular traffic engineering goal [24.] 25] 42]. Iteot
tially improves the quality of experience and postponesrbed
for capacity increaseCaTE mitigates bottlenecks and minimizes
the maximum link utilization by re-assigning parts of theffic
traversing heavily loaded paths. Thus it redirects trafiiother,
less utilized paths. As we will elaborate in Secfidn 6, défe met-
rics such as path length or network delay can also be usedTit.

4.3 caTE and Traditional TE

CaTE is complementary to routing-based traffic engineering as
it does not modify the routing. Routing-based traffic engiigg
adjusts routing weights to adapt to traffic matrix changesavoid
micro-loops during IGP convergence [26], itis common [cacto
only adjust a small number of routing weights [25]. To lintiet
number of changes in routing weights, routing-based traffigi-
neering relies on traffic matrices computed over long tinéopls
and offline estimation of the routing weights. Thereforaytirag-
based traffic engineering operates on time scales of hourishw
can be too slow to react to rapid change of traffic demaGdd E
complements routing-based traffic engineering and caneinfle
flows at shorter time scales by assigning clients to servees er
request basis. Thu§aTE influences the traffic within a network
online in a fine-grained fashion.

4.4 caTeE and Multipath Routing

Multipath routing helps end-hosts to increase and contreirt
upload capacity [37]. It can be used to minimize transit £{i2g].
Multipath also enables ASes to dynamically distribute trallin-
side networks in the presence of volatile and hard to prexiiffic
demand changes [109,116,158] 21]. This is a significant adganta
as routing-based traffic engineering can be too slow to tegite-
nomena such as flash crowds. Multipath takes advantage of the
diversity of paths to better distribute traffic.

CaTE also leverages the path diversity, and can be advanta-
geously combined with multipath to further improve traffitge
neering and end-user performance. One of the advanta@sidt
is its limited investments in hardware deployed within aR.IEcan
be realized with no change to routers, contrary to some ofitee
vious multipath proposal$ [58, 16,121]. The overhea€alE is
also limited as no state about individual TCP connectioredse
to be maintained, contrary to multipath [58,] 16] 21]. In cast
to [16,(58],CaTE is not restricted to MPLS-like solutions and is
easily deployable in todays networks.

4.5 caTE and Oscillations

Theoretical results [23, 22] have shown that load balaneing
gorithms can take advantage of multipath while provablyiding
traffic oscillations. In addition, their convergence istfaBuilding
on these theoretical results, Fischer et al. proposed REF2EH],

a dynamic traffic engineering algorithm that exploits thet flnat
there are multiple paths to a destination. It dynamicallgraes
the traffic load routed on each path. Extensive simulatidmmsvs
that REPLEX leads to fast convergence, without oscillatj@ven
when there is lag between consecutive updates about tteddtat



flow load balancing problemLet J be the set of the consumers in
the network, K be the set of content producers, anlde the set of
servers for a given content provider, i.e., the set of locetiwhere
a request can be satisfied. Note, this set is offered by thenCP i
order to satisfy its own objectives and can change over tivile.
denote as\/;; the set of flows that can deliver content for a given
content producek to consumey.
Definition 3: Restricted Flow Load Balancing Problemis the
problem of finding a feasible assignment of flows such thaféiar
engineering goal is achieved, given a set of sub-floys, } from
all eligible servers € I of a given content providet € K to a
Figure 4: CaTE and Restricted Machine Load Balancing. consumeyj € J, and a set of eligible residual rovy“gk, 1€ Mjy
(after removing the traffic of the above mentioned sub-flows)
Despite some similarities, the nature of our problem diffeom
the multi-commodity flow and bin packing. In the multi-comdity
flow problem [6], the demand between source and destinatioa p
5. caTte ALGORITHMS is given while in our problem the assignment of demands is par
In this section we propose algorithms to realaTE, in the of th_e _so_lution. In the bin pa}ckin_g probleinJ11], the o_bjeetis
context of an ISP. A key observation is tH@aTE can be reduced ~ [© Minimize the number of bins, i.e., number of flows in our set
to the restricted machine load balancing problgm [7] foraktop- ting, even if this means deviating from the given traffic emgiring
timal online algorithms are available. The benefit of BaTE g_oal. Note, in the restr_lcted flow load balancm_g p|_rob|em ely
online algorithm can be estimated either by reporting tesabm gible path from a cgndldate source to the destination carséd,u
field tests within an ISP or by using trace-driven simulasiofiyp- contrary to the multipath problem where only equal-coshpaan
ically, in operational networks only aggregated monitgritata is be used.
available. To estimate the benefit ti@aTE offers to an ISP, we . . e
present offline algorithms that uses traffic demands andeseliv 5.2 Online Algorlthm and Competltlveness

versity over time extracted from those statistics as input. We next turn to the design of online algorithms. It has been
shown that in the online restricted machine load balanciipp

5.1 Connection to Restricted Machine Load lem, the greedy algorithm that schedules a permanent taak to

the network. CaTE is derived from the same principles and thus
inherits all the above-mentioned desired properties.

Balancmg eligible processor having the least load is exactly optifihli. e.,

Given a set of CPs and their network location diversity, we-co It iS the best that can be found, achieving a competitiveorati
sider the problem of re-assigning the flows that correspordkt [log, ] +1, wheren is the number of machines. If tasks are split-
mands of content consumers to the CPs in such away that dispeci {@ble then the greedy algorithm is 1-competitive, i. e.jélds the
traffic engineering goal is achieved. Given that sub-flowsvben same performance as an offline optimal algorithm. The gredy
end-systems and content provider servers can be re-digtdlonly ~ 9°rithm is an online one, thus it converges to the optimaltmh
to a subset of the network paths, we show that the solutioheof t ~immediately without oscillations.
optimal traffic matrix problem corresponds to solving téstricted In the restricted flow load balancing problem, the 6. can
machine load balancing problefi]. In the restricted machine load D€ obtained from the set of candidate servers that can delore
balancing problem, a sequence of tasks is arriving, wherle &k tent when utilizingCaTE as described in Sectign 8.2. The online

can be executed by a subset of all the available machinesydaie ~ @ssignment of users to servers per request, which minintizes
is to assign each task upon arrival to one of the machinescémat ~ Overall load, leads to an optimal assignment of sessiorigmstb-

execute it so that the total load is minimized. Note, cogttarthe flows. Inour case, flows are splittable since the contenespond-
case of multipath where paths between only one sourcenatisti ing to each content request is negligible compared to theative
pair are utilizedCaTE can utilize any eligible path between any traffic traversing a link. Note, the end-to-end TCP conmetiare
candidate source and destination of traffic. not splittable. Thus, the following online algorithm is wpal:

For ease of presentation let us assume that the traffic esrgine Algorithm 1. Online Greedy Sgrver Selection.Upon the arrival
ing goal is to minimize the maximum link utilization in thetne ~ Of & content user request, assign the user to the serverahate
work [24,[25]. Let us consider three consumers where each one!iver the content, out of all the servers offered by the CBhshat
wants to download one unit of content from two different et  the traffic engineering goal is achieved.
providers, see Figufd 4. Given that different servers ctinestehe . . . .
content on behalf of the two providers, the problem conéisés- 5.3 E.Stlmatmg the Benefit ofcate with Pas-
signing consumers to servers in such a way that their demeaeds sive Measurements
satisfied while minimizing the maximum link utilization ihe net- Before applyingCaTE in real operational networks, it is impor-
work. Thus, the problem is the restricted machine load tuitan tant to understand the potential benefits that it can brirygiven
one where tasks are the demands satisfied by the servers and maontext. For example, the operator of an ISP network wolltd
chines are the bottleneck links that are traversed whenha pat know in advance what are the gains when apph@&J E, as well
of all eligible server-consumer paths, is selected. Figlishows as being able to answer what-if scenarios, when applgagE
one of the possible solutions to this problem, where consume to traffic delivered by different CPs. Operators of CPs walkb
is assigned to servers 1 and 4, consumer 2 to servers 5 and 2, anlike to quantify the benefits by participating @aTE before col-
consumer 3 to servers 3 and 6. Note that the machine loadtefer  laborating with an ISP. In most operational networks, agated
the utilization of the bottleneck links of eligible pathgrbted as statistics and passive measurements are collected to ruqmeos-
link 1 and 2. ational decisions. Therefore, we provide a framework tHatva

To be consistent with our terminology, we define thstricted a simulation-driven evaluation @aTE. To that end, we present
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Figure 6: Normalized traffic for top CPs by volume in ISP1.

offline algorithms that can take as input passive measurenagil
evaluate the potential gain when applyi6@TE in different sce-
narios in AppendiXCA. We propose a linear programming formu-
lation as well as greedy approximation algorithms to spgethe
process of estimating the gain when us@aTE.

6. EVALUATION OF cate

In this section, we quantify the potential G&TE with different
traffic engineering goals in mind. We evalu&aTE with opera-
tional data from three different networks. For the first reatey we
rely on content demands built from observed traffic of a Easop
Tier-1 ISP. The other two networks, namely AT&T and Abilene,
allow us to evaluate the impact of the ISP topology structure

6.1 Experimental Setting

To evaluateCaTE, an understanding of the studied ISP network
is necessary, including its topological properties and ihaplica-
tions on the flow of traffic. Indeed, the topological propestof the
ISP network influence the availability of disjoint paths,ichhare
key to benefit from the load-balancing ability G&TE. Because
CaTE influences traffic aggregates inside the ISP network at the
granularity of requests directed to CPs, fine-grained traffitis-
tics are necessary. Traffic counts per-OD flow, often usedhén t
literature, are too coarse an input foaTE.

6.1.1 Data from a Large European ISP

To build fine-grained traffic demands, we rely on anonymized
packet-level traces of residential DSL connections froargd Eu-
ropean Tier-1 ISP, henceforth call&slP1 For ISP1, we have the
complete annotated router-level topology including theeoloca-
tions as well as all public and private peerings. ISP1 costaiore
than650 routers and0 peering points all over the world.

We collect al0 days long trace starting on May 7, 2010. Our
monitor, using Endace monitoring cards|[10], allows us tseste

the traffic of more tharz0, 000 DSL lines to the Internet. We cap-
ture HTTP and DNS traffic using the Bro intrusion detection-sy
tem [51]. We observe 720 million DNS messages as well as more
than 1 billion HTTP requests involving about 1.4 million goe
hostnames, representing more than 35 TBytes of data. With re
gards to the application mix, more than 65% of the traffic wodu

is due to HTTP. Other popular applications that contribot¢he
overall traffic volume are NNTP, BitTorrent, and eDonkey.

A large fraction of the traffic in the Internet is due to large<C
including CDNSs, hyper-giants, and OCHSs, as reported iniexarl
studies[[27["40, 82]. In Figuid 5, we plot the cumulative fi@c
of HTTP traffic volume as a function of the CPs that origindte t
traffic. We define a CP as a organizational unit where all serve
from the distributed infrastructure serve the same conterth as
Akamai or Google. We rank the CPs by decreasing traffic volume
observed in our trace. Note that the x-axis uses a logaritsoale.
The top 10 CPs are responsible for around 40% of the HTTParaffi
volume and the top 100 CPs for close to 70% of the HTTP traffic
volume. The marginal increase of traffic is diminishing when
creasing the number of CPs. This shows that collaboratiregtly
with a small number of large CPs, can yield significant sasing

In Figure® we plot the traffic of the top 1, 10, 100 CPs by volume
as well as the total traffic over time normalized to the peafitrin
our dataset. For illustrative purposes, we show the evwildcross
the first60 hours of our trace. A strong diurnal pattern of traffic
activity is observed. We again observe that a small numb&Rsf
are responsible for about half of the traffic. Similar obsgéinns
are made for the rest of the trace.

6.1.2 Understanding the Location Diversity of CPs

To achieve traffic engineering goals, it is crucial to alsdem
stand the location diversity of the top CPs,G&TE relies on the
fact that the same content is available at multiple locatidmaffic
originated from multiple network locations by a given CPasis by
CaTE as a single atomic traffic aggregate to be engineered. Fur-
thermore, as routing in the Internet works per prefix, we @m&su
that the granularity of subnets is the finest at wh@aTE should
engineer the traffic demand. Thus, we differentiate canelitta
cations of CPs by their subnets and quantify the locatioardity
of CPs through the number of subnets from which content can be
obtained.

We examine the amount of location diversity offered by CPs
based on traces from ISP1. To identify the subnets of individ
ual CPs, we rely on a similar methodology to the one from Poese
et al. [52]. Our granularity is comparable to their "infrasture
redirection aggregation”. Figufé 7 shows the cumulatieetfon
of HTTP traffic as a function of the number of subnets (lodpanic
scale) from which a given content can be obtained, over thieeen
10 days of the trace. We observe that more th&% of the HTTP
traffic can be delivered from at lea®tdifferent subnets, and more
than60% of the HTTP traffic from more thafi locations. These
results confirm the observations made_in [52].

6.1.3 Dynamics in Location Diversity

So far the location diversity of CPs has been evaluatedpe®s
tive of time. To complement the finding, we turn our attention
the location diversity exposed by CPs at small time-scales, in
the order of minutes. To this end, we split the original trade
10 minutes bins. Figurg]8 shows the evolution of the number of
exposed subnets of five of the top 10 CPs by volume. Note tkat th
diversity exposed by some CPs exhibits explicit time of day p
terns, while others do not. This can be due to the structetapsor
the type of content served by the CP. The exposed locatiar-div
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Figure 8: Evolution over time of number of subnets for seleatd
CPs in the top 10 CPs.

sity patterns, i. e., flat or diurnal, are representativeafb€Ps with

a major traffic share in our trace. We conclude that a sigmifica
location diversity is exposed by popular CPs at any pointniret
and is quite extensive during the peak hour.

6.1.4 Content Demand Generation

The location diversity is not a mere observation about CPs de
ployment. It requires to revisit the mapping between a gisem-
tent demand and the realized traffic matrix. Given the locatii-
versity for content, multiple traffic matrices can be readiZrom a
given content demand. The standard view of the OD flows thezef
provides an incomplete picture of the options availableCfal E.

As an input forCaTE, we introduce an abstraction of the de-
mand that reflects the available location diversity. We melythe
notion ofpotential vectorsthat were denoted as. in Sectiof 4.P.
To generate the potential vector for a given CP, the amoutmabf
fic this CP originates as well as the potential ingress poiaei to
be known. Combining all potential vectors ang we synthesize a
network-wide content demand matrix for each time bin, byisga
the traffic demand to match the network utilization of ISPDr F
our evaluation, we use the series of content demand matiees
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Figure 9: Maximum link utilization reduction (top) and tota |
traffic reduction (bottom) with CaTE for the top CPs.

ISP to select the set of CPs that are the most important tblessta
collaboration with. Since a significant fraction of the fiabrig-
inates from a small number of CPs, we consider the most popula
CPs by volume to evaluateaTE. In the following, we perform a
sensitivity study where we quantify the benefit<GQ#TE when re-
stricting its use to the top 1, 10 and 100 CPs by volume. Aléoth
traffic remains unaffected b@aTE. For all experiments, we use
the Algorithm2 from Appendik AR.

Effect on Maximum Link Utilization . Figure[® (top) shows the
reduction of the maximum link utilization over a period dflays
when considering the top 1, 10 and 100 CPs. Once again, we
normalized the absolute link utilization by the maximal offéne
largest gain in maximum link utilization reduction is up 16%,
40% and 70% respectively. We observe large fluctuations of the
gains which are due to variations in traffic (see Fidgure 7)land-
tion diversity (FigurdB) throughout the day. The largeshgare
obtained during peak times, when there is more traffic anditjie

est location diversity is available. This is also when catiga is

at its peak an€aTE is most needed. Our results show tGaTE

is able to react to diurnal changes in traffic volume andagsithe
available location diversity.

Effect on Network-wide Traffic. Although optimizing for link

a period ofl10 days. The content demands are based exclusively on utilization, CaTE reduces the overall traffic that flows through the

the HTTP traffic of our trace.
6.2 CaTEinISP1

To quantify the benefits o€aTE, we first consider one of the
most popular traffic engineering goals, namely minimizimgnax-
imum utilization of the links in the network [24, 25]. Theiatale
is that by minimizing the maximum link utilization, netwobot-
tlenecks are reduced, in turn limiting queueing delays,raving
the quality of experience and postponing the need for isa@a
network capacity.

With CaTE, an ISP can collaborate with any CP. It is up to the

network, see Figuilg 9 (bottom). This is due@aTE choosing the
shortest path when multiple ones with the same utilizatrerasail-
able, thus, as a side effect, content is fetched from clasations
and therefore traverses less links. WBATE, the gains in overall
traffic reduction are up t6% and follows a clear diurnal pattern.
It is worth noticing that just with the top 10 CPs, the totalffic
reduction is very close to the one when considering the tdp 10
CPs, indicating tha€aTE only needs to be implemented with the
major players. Also, an ISP that is able to reduce the oveedfic
inside its network is more competitive as it can serve mom en
users with the same infrastructure, delay additional iimaegts in
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capacity upgrades and improve end-user satisfaction.

Effect on Distribution of Link Utilization . Reducing the maxi-
mum link utilization shifts traffic away from congested IskHow-
ever, it should not be done at the expense of creating cangest
other highly utilized links. In FigurE-10 we plot the CDF oéffic
volume in ISP1 across all link utilizations, normalized hg max-
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Figure 12: Improvement in path delay (in ms) with CaTE.

sidered. As content infrastructures are located close &g
points [40,/39] P], e.g., IXPs or private peerings, the delase
expected to be relatively small, especially for popular CEs-
timating the impact ofCaTE on the end-to-end performance for
every application is very challenging, due to the many factbat
influence flow performance, especially network bottlenexiside
the considered ISP. In Appendi¥ B we show the results from ac-
tive measurements conducted in the case of traffic-heavjcapp
tions, confirming the significant improvements in end-to-delay
as well as download time that can be achieved thaniZafbE.
Summary. Our evaluation shows th&aTE yields encouraging
results, even when only a few large CPs are collaboratiniy arit
ISP. In fact, even metrics that are not directly related ® dbti-
mization function ofCaTE are improved. Besides significant im-
provements for the operation of ISP networks, the end-users
expected to also benefit from these gains. This can be atdta
the decrease of delay as well as the reduced link utilization

6.3 catE with other Network Metrics
So far we have evaluate@aTE with one traffic engineering

imum one when considering sets of the top CPs by volume. The objective, namely, the minimization of maximum link utdizon.

results show thaCaTE shifts the traffic away from highly utilized
links to low utilized ones.

Effect on Traffic Path Length. Our results in Figurgl9 (bottom)
show a reduction in the overall traffic in ISP1, which can be at
tributed to an overall reduction of the path length. Pattyieme-
duction is an important metric for ISPs for the dimensionifighe
network as well as the reduction of operational costs. Tatifya
this reduction in terms of the path length inside ISP1, Fedlid
shows the relative traffic across different path lengthgdashe
network. CaTE redirects the traffic towards paths with the same
or even shorter length than the ones used witlZaitE, only in

the rare case where a longer paths yields a lower utiliza@GaiTE
can choose a longer one. Note that there is no traffic for kb
path length equal to 1 due to the network design of ISP1. We con
clude that applyingcaTE to a small number of CPs yields major
improvements in terms of path length.

Effect on Path Delay Although the objective of minimizing max-
imum link utilization is not directly related to the redumti of path
delay, the achieved reduction in path length directly aff¢ee path
delay. Figuré IR shows the accumulated path delay for tlictra
that flows within ISP1, when applyinGaTE. The reported num-
bers for the backbone path delay are relatively modest credpa
to the values for the access part of the network [46]. However
improving the access delay requires significant investmastit
can be done mostly through changes in the access technelagy,
from copper to fiber. When considering the end-to-end detay,
delay of the path outside the ISP’s network also needs to be co

CaTE allows ISPs and CPs to to optimize for other network met-
rics such as path length or path delay. To this end, we quyathif
effects ofCaTE when using path length and delay and compare it
with the results presented in Sect[on]6.2. We focus on thé@p
CPs as our results show that most of the benefits f8@fE can be
achieved with this rather low number of CPs. Similar obsona
are made when applyin@aTE to the top 1 and 100 CPs.

In Figure[TI3 (top) we plot the total traffic reduction when lgpp
ing CaTE to the top 10 CPs with different optimization goals. The
first observation is that when the network metric is path tlentne
total traffic reduction is the highest, with up16%. The total traf-
fic reduction when optimizing for path length are close todhe
achieved when the metric is delay. Optimizing for other iostr
provides the expected result: the optimized metric is icamtly
improved, but at the cost of not optimizing other metrics agim
For example, optimizing for link utilization diminishesetlvenefits
from path length (Figur€Z14 top) and vice-versa (Fidure 18 bo
tom). Still, significant improvements can be achieved evéemw
optimizing for another network metric and we encounteredage
of significant deterioration in on of the network metricsatinghout
our experiments, see Figurel13 and Fidure 14.

6.4 catTeEin AT&T and Abilene

To quantify the potential benefits GfaTE in networks with dif-
ferent topological structures than ISP1, we repeat ourraxgats
for two other ISPs: AT&T and Abilene.

AT&T is one of the largest commercial networks. We use the
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Figure 13: Total traffic (top) and maximum link utilization
(bottom) reduction with CaTE and different network metrics.

topology for the US backbone of AT&T as measured by the Rock-
etfuel project([60. 57]. Given that no publicly availablaffic de-
mands exist for AT&T, we rely on the gravity model [54] to gene
ate several traffic demand matrices as in ISP1.

Abilene is the academic network in the US. We use the Abilene
topology and traffic demands covering a 6 month period that ar
both publicly availabld

The topology of both networks differ significantly from theeo
of ISP1. In AT&T, many smaller nodes within a geographicaaar
are aggregated into a larger one. Abilene has few but largevait
connected nodes with a high degree of peerings. For thecagipin
mix we rely on recent measurements in AT&T [27] and for server
diversity we rely on measurements of users in these netwatks

Figure[IH shows the cumulative fraction of normalized lik u
lizations for AT&T and Abilene with different optimizatiogoals.
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Figure 14: Backbone path length (top) and accumulated path
delay (bottom) with CaTE and different network metrics.

closer, but at the cost of keeping the high utilization on sarh
the links. However, when looking at the median traffic redct
both metrics manage to reduce the traffic by ®4%. These re-
sults show tha€aTE is capable of targeting different optimization
goals in different network structures and is able to opteniar dif-
ferent metrics.

It is worth noting that for AT&T40% of the links have a nor-
malized link utilization less than0% while the remaining link
utilizations are distributed almost linear. This disttiba fits the
structural observations made for the AT&T network: manyksin
from smaller nodes are aggregated into larger ones. Thiseals
plains why the benefits for AT&T are smaller, since such acstru
ture reduces the path diversity. Turning our attention tdekie,
we attribute the higher reduction of maximum link utilizatiand
network-wide traffic to the non-hierarchical structure bé tnet-

As already done in ISP, only the Top 10 CPs are considered for work and a higher ratio of peering locations. ApplyiG@&TE to

CaTE, while all other traffic stays unaffected. For AT&T the bene-
fit for the maximum link utilization is abouwt6% when the network
is optimized for minimizing the maximum link utilization, hile
the median reduction in terms of network-wide traffic is at®0%.
When other optimizations are used, the benefit€aTE regard-
ing the link utilization minimization are approximately2% for
path length and delay. However, when looking at the medain tr
fic reduction of these metrics, the traffic is reducedbby?% when
path length is used, while delay achieves a reductiosVaf In the
Abilene network benefits oEaTE are more significantd5% re-
duction in the maximum link utilization antB% for network-wide
traffic whenCaTE optimizes for link utilization. When targeting
the other two metrics, i. e., path length and delay, the testiow
that CaTE does not reduce the maximum link utilization. In fact,
the maximum link utilizations stays constant. This is dughe
structure of the network and the fact that the content islaivizi

1http://userweb.cs.utexas.edu/~yzhang/researchM&iﬂM/

both AT&T and Abilene networks where the network metric is de
lay or path length shows similar behavior GATE as it does in
ISP1.

6.5 caTE and Popular Applications

Today, the launch of new content hosted on CPs such as high
definition video or others that share flash-crowd charastiesi is
not done in coordination with ISPs. This is challenging t®$S
that have to deal with rapid shifts of traffic volume as cutiyen
deployed traffic engineering tools are too slow to react fudra
demand changes. Furthermore, the end-user experienceger p
ular applications is far from optimal as application designhave
limited means to optimize the end-to-end delivery of cohf@fl].
Both ISPs and applications would benefit from the improvatfitr
engineering capabilities a€aTE. We believe thaCaTE can act
as an enabler for ISP-application collaboration.

For example, Netflix, a very popular application that detve
high quality videos to end-users, relies on commercial CBh
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Figure 15: Link utilization improvements after applying wh en usingCaTE in AT&T and Abilene.

as Level3 and Limelight to improve the content delivery. apad
Netflix is only available in North and Latin America. Howeyer
Netflix has announced that it will be launching its service&u-
rope early 2012. To quantify the effect of Netflix coming tar&e,
we use our simulation to estimate the effect on ISP1. We rera s
ries of experiments, assuming that the traffic of the CPsirmpst
Netflix will increase 20-fold. Our results show that wilaTE, the
total HTTP traffic volume is reduced by up to 8% and the utiliza
tion of the most utilized link by 60%. More detailed resuléde
found in AppendixX_C.

7. RELATED WORK

To meet the requirements of mission critical applicationthw
stringent Service Level Agreements (SLAs), today’s ISPs oa
traffic engineering [5] to better control the flow of IP packetside
their network. Several techniques have been proposed ilit¢he
ature, some require tuning of the IP routing protocols ussitle
the ISP network( [24, 25, 64], while others rely on multipail§,[
16,/58,[21] 28, 65]. Changing routing weights can lead tol-osci
lations [30] and is applied on time scales of hours. Multipai-
ables ISPs to dynamically distribute the traffic load witthie net-
work in the presence of volatile and hard to predict traffimdad
changes[[19, 16, 58, 21], even at very small time scales,&ut r
quires additional configuration and management or roufgpa.
CaTE is complementary to both routing-based traffic engineering
and multipath enabled networks.

Traffic engineering relies on the availability of informatiabout
the traffic demands, which can be obtained either by direséib
vations [19] 31, 20, €3] or through inference[48] 66/, (67,5,
CaTE relies on the network location diversity exposed by current
hosting and content delivery infrastructures [2].

Game-theoretic results [86.114.,]45] show that the collaimra
between CPs and ISPs can lead to a win-win situation. Reteht s
ies also show that content location diversity has signifizgaplica-
tions on traffic engineering within an ISP_|56]. To our knodge,

CaTE is the first system that is proposed to leverage the benefits of

a direct collaboration between CPs and ISPs.

8. SUMMARY

Today, a large fraction of Internet traffic is due to a few eomnt
providers that rely on highly distributed infrastructué6,(42,2].
These distributed infrastructures expose a significardtioo di-
versity, which opens new opportunities to improve end-psefor-
mance, help CPs to better locale end-user and circumvenbriet
bottlenecks, and enables new traffic engineering capabilitWe
introduce the concept @bntent-aware traffic engineerif@aTE),
that leverages this location diversity to engineer thditréfirough

careful selection of the locations from which content isaiid.
We propose deployment schemesG#HTE based on an online al-
gorithm. The algorithm is stable and incurs no oscillationink
utilizations. FurthermoreCaTE works on time scales ranging be-
tween the TCP control loop and traditional traffic enginegriand
therefore advantageously complements existing traffimeeging
techniques.

We evaluate some of the potential benefit<CafTE on multi-
ple operational networks using an offline derivative of timdire
algorithm. Our results show th&aTE provides benefits to CPs,
ISPs and end-users, by reducing the maximum link utiliratibe
path length and the delay inside an ISP network, as well dsliaga
improved end-user to CP server assignment.

In the future, we envisio€aTE as an enabler for coordinated
and Internet-wide traffic engineering. Meanwhi@aTE creates
incentives for both ISPs and CPs to interlock their traffiginaer-
ing planes through the mutual benefits it brings. As furtherky
we want to deploy a prototype implementationGdTE and eval-
uate it through a direct collaboration between a CP and an ISP
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APPENDIX

A. ESTIMATING THE BENEFITS OF caTe
WITH PASSIVE MEASUREMENTS

We answer the question of the potential ben@&flE can offer
to CPs, ISPs, and end-users. The online algorithm requies d
ployment of CaTE inside an operational network. An alternative
is to rely on a simulation-driven evaluation GRTE. For this, we
design offline algorithms that take as input passive measemes
and estimate the gain when applyi@gTE under different scenar-
ios. We first propose a linear programming formulation arehth
we present greedy algorithms to speed-up the process ofasty
the benefits oCaTE.

A.1 Linear Programming Formulation

To estimate the potential improvement ©ATE we formulate
the Restricted Flow Load Balancing problem (see Secfioh &s1
a Linear Program (LP) with restrictions on the variable eslu
Variablesf;;i correspond to flows that can be influenced. Setting
fize = 0 indicates that consumegrcannot download the content
from server; of a content providek. For each consumerwe re-
quire that its demand,, for content provider is satisfied, i.e.,
we requirezieMjk fijx = djx. The utilization on a flowf;; is
expressed ag;; = >, fijk.

We use the objective function to encode the traffic engingeri
goal. For ease of presentation we use as objective fundtien t
minimization of the maximum link utilization. LeT. be the set
of flows f;; that traverse alink € E. The link utilization of a link
e € Eisexpressed ab. = ZTC fij. LetvariableL correspond to
the maximum link utilization. We use the inequall}ty,, fi; < L
for all links. This results in the following LP problem:

min L

Zfijk:djk, Vied ke K

> fik <L, Viediel, keK,eecFE
Te

ngijkgdjk, VjGJ,iGMjk,kGK
fije =0, VjGJ,Z'QMjk,kGK

The solution of the above LP provides a fractional assigriroen
flows under the assumption that flows are splittable and tanbe
solved in polynomial time [38]. The solution is the optimadvit
assignmentf;;,., that corresponds to the optimal traffic matxix
If flows are not splittable, or the sub-flows are discretizhdn the
integer programming formulation has to be solved. In thsedhe
Restricted Flow Load Balancing problem is NP-hard and a-poly
nomial time rounding algorithm that approximates the assignt
within a factor of2 exists [43].

A.2 Approximation Algorithms

Since it is a common practice for operators to study multiple
scenarios to quantify the effect of changes in traffic matriover
periods that spans multiple weeks or months, solutionsthaiséP
may be too slow. It might be also too slow to estimate the géin o
CaTE when applying it to an arbitrary combination of CPs. To that
end, we turn our attention to the design of fast approxinnaigo-
rithms. Simple greedy algorithms for load balancing proige29]

Algorithm 2: Iterative Greedy-Sort-Flow.

INPUT: I, J, K, {fijx}, {Mjr}, A.
OUTPUT: { [}

ijk I

Initialization:
1. Sortk € K by decreasing volumex_, 3= fij.

2. Sortj € J by decreasing volumey, fi;x forall k € K.

Iteration:
Until no sub-flow is re-assigned or the maximum number of
iterations has been reached.
> Pick unprocessed € K in descending order.
> Pick unprocessed € J in descending order.
> Re-assigrf;;x in f,L.;’“, 1 € My s.t. the engineering
goal is achieved.
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Figure 16: Distribution of download times of a CP.

gorithm for our problem which starts with the largest flowtfirs
Algorithm 3: Greedy-Sort-Flow. Sort sub-flows in decreasing
order based on volume and re-assign them in this order tothry o
eligible flow which, after assigning the sub-flgfy ., will yield the
desire traffic engineering goal.

Assignment in sorted order has been shown to significantly im
prove the approximation ratio and the convergence spee®£(3
Recent studies [27, 40, 52] show that a small number of conten
providers are responsible for a large fraction of the traffibere-
fore it is expected that the algorithm yields results clasthé opti-
mal ones. To further improve the accuracy of the proposecbapp
imation algorithm, we design aterative version of the algorithm,
presented in Algorithrill2, that converges to the optimal tamiu
Indeed, a small number of iterations, typically one, suff@ero-
vide a stable assignment of flows.

As we elaborate in Sectidd 6, we performed a number of sim-
ulations using real operational traces, and different e€tSPs.
Our evaluation show that the performance of the iteratieedy
algorithm presented in Algorithfd 2 yields results very elos this
obtained with LP, but in significantly shorter time.

B. ACTIVE MEASUREMENTS IN ISP1

The CaTE evaluation in Sectioh 6.2 does not allow us to argue
about end-user performance, as it is based on simulatianthi§
end, we complement our previous network-wide simulatioite w
active measurements. Over a period of one week, we repgated|
downloaded a 60MB object from one of the major CPs. This CP
is an OCH distributed across 12 locations. The download® wer
performed every two hours, from each of the 12 locations. iAdd
tionally, mapping requests were issued every 200ms to fihtheu

are among the best known. Accordingly, we propose a greedy al dynamics in the server assignment of this CP. Figuie 16 skimsvs
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duction in overall network traffic (middle) and fraction of v ol-
ume by path length (bottom) if Netflix is launched in ISP1.

distribution of total download times when the CP assignsesets

to its servers ("original") and compares it to the downldetktthat
would be observed i€aTE had been used. We observe that more
than 50% of the downloads do not show a significant difference.
This happens when congestion is low, €. g., during non-peaksh
For 20% of the downloads, we observe a significant difference in
the download times, mainly during peak hours. This confirms o
observation tha€aTE is most beneficial during peak hours.

C. CASE STUDY: NETFLIX IN ISP1

Netflix, a very popular application that delivers high gtialiideos
to end-users, relies on commercial CDNs such as Level3 and-Li
light to improve the content delivery. Today, Netflix is dahie in
North and Latin America, and is announced to arrive in the UK
soon. Recent studies show that Netflix is responsible foerttaan
30% of the peak downstream traffic in large ISPs [34]. Comgluie
scenario where Netflix is launching its service in the largedpean
ISP1 we described in Sectibn b.1. If the launch happens mern
ISP1 would have to deal with a huge amount of highly variatag t
fic, which would have significant implications on the operatof

ISP1. WithCaTE, the traffic of Netflix can be spread across the
ingress points of ISP1. This will limit the negative conseqces
imposed by additional traffic for the CP delivering Netflixwasl|
as for ISP1 and thus avoids a deteriorated end-user experien

To quantify the effect of Netflix being deployed in Europe, we
simulate the launch of Netflix in ISP1, assuming that the CP cu
rently hosting Netflix increases its traffic 20-fold, whiledping the
distribution of the requests. Next, we generate a new setififct
demands folCaTE accordingly. We consider the the top 10 CPs
by volume forCaTE, and show the benefits when optimizing for
different metrics.

Our results show that witBaTE, the utilization of the most uti-
lized link can be reduced by up to 60% (see top of Fifuie 1€), th
total HTTP traffic volume can be reduced by 15% (see middle of
Figure[1T) and traffic can be shifted towards shorter patbisién
the network of ISP1 (bottom of Figuirell7). However, when abns
ering all metrics, we observe that not all metrics can benaggd
to their full extend at the same time. For example, a redoatio
traffic in the order of 15% would actually increase the uitian
on the highest loaded link by 60%. This indicates that thé- opt
mization function employed bgaTE needs to be carefully chosen
to target the most important metrics when deploy@al E inside
a network. Nonetheless, if minimizing the maximum link iat-
tion is chosen as the optimization function 0aTE, benefits in
all metrics can be observed.

Internet applications such as Netflix are in a position tcotiege
how they should be deployed in order to improve end-userrexpe
ence and not disturb the operation of ISERTE can be used to
identify the best peering points between the CPs that delle&lix
traffic and the ISPs that receive its traffic. In addition, $SRight
offer better peering prices if the CPs hosting Netflix ardimgl to
provide a higher diversity in the locations from which theffic can
be obtained. This would lead to a win-win situation whereflNet
can offer better service to its users, the CPs achieve rddurizng
on their peering agreements, and ISPs can compensate tleeded
peering revenue through more efficient operations.
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