90 research outputs found
The Coherent State Representation of Quantum Fluctuations in the Early Universe
Using the squeezed state formalism the coherent state representation of
quantum fluctuations in an expanding universe is derived. It is shown that this
provides a useful alternative to the Wigner function as a phase space
representation of quantum fluctuations. The quantum to classical transition of
fluctuations is naturally implemented by decohering the density matrix in this
representation. The entropy of the decohered vacua is derived. It is shown that
the decoherence process breaks the physical equivalence between vacua that
differ by a coordinate dependent phase generated by a surface term in the
Lagrangian. In particular, scale invariant power spectra are only obtained for
a special choice of surface term.Comment: 25 pages in revtex 3. This version is completely revised with
corrections and significant new calculation
Unified model of baryonic matter and dark components
We investigate an interacting two-fluid cosmological model and introduce a
scalar field representation by means of a linear combination of the individual
energy densities. Applying the integrability condition to the scalar field
equation we show that this "exotic quintessence" is driven by an exponential
potential and the two-fluid mixture can be considered as a model of three
components. These components are associated with baryonic matter, dark matter
and dark energy respectively. We use the Simon, Verde & Jimenez (2005)
determination of the redshift dependence of the Hubble parameter to constrain
the current density parameters of this model. With the best fit density
parameters we obtain the transition redshift between non accelerated and
accelerated regimes z_{acc}=0.66 and the time elapsed since the initial
singularity t_0= 19.8 Gyr. We study the perturbation evolution of this model
and find that the energy density perturbation decreases with the cosmological
time.Comment: 8 pages, 6 figures A new section adde
Effects of impurity scattering on electron-phonon resonances in semiconductor superlattice high-field transport
A non-equilibrium Green's function method is applied to model high-field
quantum transport and electron-phonon resonances in semiconductor
superlattices. The field-dependent density of states for elastic (impurity)
scattering is found non-perturbatively in an approach which can be applied to
both high and low electric fields. I-V curves, and specifically electron-phonon
resonances, are calculated by treating the inelastic (LO phonon) scattering
perturbatively. Calculations show how strong impurity scattering suppresses the
electron-phonon resonance peaks in I-V curves, and their detailed sensitivity
to the size, strength and concentration of impurities.Comment: 7 figures, 1 tabl
Charged hydrogenic problem in a magnetic field: Non-commutative translations, unitary transformations, and coherent states
An operator formalism is developed for a description of charged electron-hole
complexes in magnetic fields. A novel unitary transformation of the Hamiltonian
that allows one to partially separate the center-of-mass and internal motions
is proposed. We study the operator algebra that leads to the appearance of new
effective particles, electrons and holes with modified interparticle
interactions, and their coherent states in magnetic fields. The developed
formalism is used for studying a two-dimensional negatively charged
magnetoexciton . It is shown that Fano-resonances are present in the
spectra of internal transitions, indicating the existence of
three-particle quasi-bound states embedded in the continuum of higher Landau
levels.Comment: 9 pages + 2 figures, accepted in PRB, a couple of typos correcte
Photo--assisted current and shot noise in the fractional quantum Hall effect
The effect of an AC perturbation on the shot noise of a fractional quantum
Hall fluid is studied both in the weak and the strong backscattering regimes.
It is known that the zero-frequency current is linear in the bias voltage,
while the noise derivative exhibits steps as a function of bias. In contrast,
at Laughlin fractions, the backscattering current and the backscattering noise
both exhibit evenly spaced singularities, which are reminiscent of the
tunneling density of states singularities for quasiparticles. The spacing is
determined by the quasiparticle charge and the ratio of the DC bias
with respect to the drive frequency. Photo--assisted transport can thus be
considered as a probe for effective charges at such filling factors, and could
be used in the study of more complicated fractions of the Hall effect. A
non-perturbative method for studying photo--assisted transport at is
developed, using a refermionization procedure.Comment: 14 pages, 6 figure
Limits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors at the Tevatron
We present 90% confidence level limits on magnetic monopole production at the
Fermilab Tevatron from three sets of samples obtained from the D0 and CDF
detectors each exposed to a proton-antiproton luminosity of
(experiment E-882). Limits are obtained for the production cross-sections and
masses for low-mass accelerator-produced pointlike Dirac monopoles trapped and
bound in material surrounding the D0 and CDF collision regions. In the absence
of a complete quantum field theory of magnetic charge, we estimate these limits
on the basis of a Drell-Yan model. These results (for magnetic charge values of
1, 2, 3, and 6 times the minimum Dirac charge) extend and improve previously
published bounds.Comment: 18 pages, 17 figures, REVTeX
Search for Rare and Forbidden Dilepton Decays of the D+, Ds, and D0 Charmed Mesons
We report the results of a search for flavor-changing neutral current,
lepton-flavor violating, and lepton-number violating decays of D+, Ds, and D0
mesons (and their antiparticles) into modes containing muons and electrons.
Using data from Fermilab charm hadroproduction experiment E791, we examine the
pi,l,l and K,l,l decay modes of D+ and Ds and the l+l- decay modes of D0. No
evidence for any of these decays is found. Therefore, we present
branching-fraction upper limits at 90% confidence level for the 24 decay modes
examined. Eight of these modes have no previously reported limits, and fourteen
are reported with significant improvements over previously published results.Comment: 12 pages, 3 figures, LaTeX, elsart.cls, epsf.sty, amsmath.sty
Submitted to Physics Letters
Critical behavior of the two-dimensional N-component Landau-Ginzburg Hamiltonian with cubic anisotropy
We study the two-dimensional N-component Landau-Ginzburg Hamiltonian with
cubic anisotropy. We compute and analyze the fixed-dimension perturbative
expansion of the renormalization-group functions to four loops. The relations
of these models with N-color Ashkin-Teller models, discrete cubic models,
planar model with fourth order anisotropy, and structural phase transition in
adsorbed monolayers are discussed. Our results for N=2 (XY model with cubic
anisotropy) are compatible with the existence of a line of fixed points joining
the Ising and the O(2) fixed points. Along this line the exponent has
the constant value 1/4, while the exponent runs in a continuous and
monotonic way from 1 to (from Ising to O(2)). For N\geq 3 we find a
cubic fixed point in the region , which is marginally stable or
unstable according to the sign of the perturbation. For the physical relevant
case of N=3 we find the exponents and at the cubic
transition.Comment: 14 pages, 9 figure
Toward a 21st-century health care system: Recommendations for health care reform
The coverage, cost, and quality problems of the U.S. health care system are evident. Sustainable health care reform must go beyond financing expanded access to care to substantially changing the organization and delivery of care. The FRESH-Thinking Project (www.fresh-thinking.org) held a series of workshops during which physicians, health policy experts, health insurance executives, business leaders, hospital administrators, economists, and others who represent diverse perspectives came together. This group agreed that the following 8 recommendations are fundamental to successful reform: 1. Replace the current fee-for-service payment system with a payment system that encourages and rewards innovation in the efficient delivery of quality care. The new payment system should invest in the development of outcome measures to guide payment. 2. Establish a securely funded, independent agency to sponsor and evaluate research on the comparative effectiveness of drugs, devices, and other medical interventions. 3. Simplify and rationalize federal and state laws and regulations to facilitate organizational innovation, support care coordination, and streamline financial and administrative functions. 4. Develop a health information technology infrastructure with national standards of interoperability to promote data exchange. 5. Create a national health database with the participation of all payers, delivery systems, and others who own health care data. Agree on methods to make de-identified information from this database on clinical interventions, patient outcomes, and costs available to researchers. 6. Identify revenue sources, including a cap on the tax exclusion of employer-based health insurance, to subsidize health care coverage with the goal of insuring all Americans. 7. Create state or regional insurance exchanges to pool risk, so that Americans without access to employer-based or other group insurance could obtain a standard benefits package through these exchanges. Employers should also be allowed to participate in these exchanges for their employees' coverage. 8. Create a health coverage board with broad stakeholder representation to determine and periodically update the affordable standard benefit package available through state or regional insurance exchanges
- …