We investigate an interacting two-fluid cosmological model and introduce a
scalar field representation by means of a linear combination of the individual
energy densities. Applying the integrability condition to the scalar field
equation we show that this "exotic quintessence" is driven by an exponential
potential and the two-fluid mixture can be considered as a model of three
components. These components are associated with baryonic matter, dark matter
and dark energy respectively. We use the Simon, Verde & Jimenez (2005)
determination of the redshift dependence of the Hubble parameter to constrain
the current density parameters of this model. With the best fit density
parameters we obtain the transition redshift between non accelerated and
accelerated regimes z_{acc}=0.66 and the time elapsed since the initial
singularity t_0= 19.8 Gyr. We study the perturbation evolution of this model
and find that the energy density perturbation decreases with the cosmological
time.Comment: 8 pages, 6 figures A new section adde