1,433 research outputs found

    Effects of fibre content and textile structure on dynamic-mechanical and shape-memory properties of ELO/flax biocomposites

    Get PDF
    Biocomposites were prepared using epoxidized linseed oil (ELO) and flax fibre reinforcements in different assemblies. ELO was cured by two different anhydrides to check how its thermomechanical properties can be influenced. As reinforcements nonwoven mat, twill weave and quasi-unidirectional textile fabrics with two different yarn finenesses were used. Their reinforcing effect was determined in dynamic mechanical analysis (DMA) in flexure. DMA served also to determine the glass transition temperature (Tg). Shape memory properties were derived from quasiunconstrained flexural tests performed near to the Tg of the ELO and its biocomposites. Flax reinforcement reduced the Tg that was attributed to off-stoichiometry owing to chemical reaction between the hydroxyl groups of flax and anhydride hardener. The shape memory parameters were moderate or low. They were affected by both textile content and type

    Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer

    Get PDF
    The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells

    Enhancing discrete-event simulation with big data analytics: a review

    Get PDF
    This article presents a literature review of the use of the OR technique of discrete-event simulation (DES) in conjunction with the big data analytics (BDA) approaches of data mining, machine learning, data farming, visual analytics, and process mining. The two areas are quite distinct. DES represents a mature OR tool using a graphical interface to produce an industry strength process modelling capability. The review reflects this and covers commercial off-the-shelf DES software used in an organisational setting. On the contrary the analytics techniques considered are in the domain of the data scientist and usually involve coding of algorithms to provide outputs derived from big data. Despite this divergence the review identifies a small but emerging literature of use-cases and from this a framework is derived for a DES development methodology that incorporates the use of these analytics techniques. The review finds scope for two new categories of simulation and analytics use: an enhanced capability for DES from the use of BDA at the main stages of the DES methodology as well as the use of DES in a data farming role to drive BDA techniques

    Programmable in situ amplification for multiplexed imaging of mRNA expression

    Get PDF
    In situ hybridization methods enable the mapping of mRNA expression within intact biological samples. With current approaches, it is challenging to simultaneously map multiple target mRNAs within whole-mount vertebrate embryos, representing a significant limitation in attempting to study interacting regulatory elements in systems most relevant to human development and disease. Here, we report a multiplexed fluorescent in situ hybridization method based on orthogonal amplification with hybridization chain reactions (HCR). With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability and sequence specificity of these amplification cascades enable multiple HCR amplifiers to operate orthogonally at the same time in the same sample. Robust performance is achieved when imaging five target mRNAs simultaneously in fixed whole-mount and sectioned zebrafish embryos. HCR amplifiers exhibit deep sample penetration, high signal-to-background ratios and sharp signal localization

    Prevalence of Esophageal Atresia among 18 International Birth Defects Surveillance Programs

    Get PDF
    BACKGROUND: The prevalence of esophageal atresia (EA) has been shown to vary across different geographical settings. Investigation of geographical differences may provide an insight into the underlying etiology of EA. METHODS: The study population comprised infants diagnosed with EA during 1998 to 2007 from 18 of the 46 birth defects surveillance programs, members of the International Clearinghouse for Birth Defects Surveillance and Research. Total prevalence per 10,000 births for EA was defined as the total number of cases in live births, stillbirths, and elective termination of pregnancy for fetal anomaly (ETOPFA) divided by the total number of all births in the population. RESULTS: Among the participating programs, a total of 2943 cases of EA were diagnosed with an average prevalence of 2.44 (95% confidence interval [CI], 2.352.53) per 10,000 births, ranging between 1.77 and 3.68 per 10,000 births. Of all infants diagnosed with EA, 2761 (93.8%) were live births, 82 (2.8%) stillbirths, 89 (3.0%) ETOPFA, and 11 (0.4%) had unknown outcomes. The majority of cases (2020, 68.6%), had a reported EA with fistula, 749 (25.5%) were without fistula, and 174 (5.9%) were registered with an unspecified code. CONCLUSIONS: On average, EA affected 1 in 4099 births (95% CI, 1 in 39544251 births) with prevalence varying across different geographical settings, but relatively consistent over time and comparable between surveillance programs. Findings suggest that differences in the prevalence observed among programs are likely to be attributable to variability in population ethnic compositions or issues in reporting or registration procedures of EA, rather than a real risk occurrence difference. Birth Defects Research (Part A), 2012. (c) 2012 Wiley Periodicals, Inc

    Early detection and surveillance of SARS-CoV-2 genomic variants in wastewater using COJAC

    Get PDF
    The continuing emergence of SARS-CoV-2 variants of concern and variants of interest emphasizes the need for early detection and epidemiological surveillance of novel variants. We used genomic sequencing of 122 wastewater samples from three locations in Switzerland to monitor the local spread of B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) variants of SARS-CoV-2 at a population level. We devised a bioinformatics method named COJAC (Co-Occurrence adJusted Analysis and Calling) that uses read pairs carrying multiple variant-specific signature mutations as a robust indicator of low-frequency variants. Application of COJAC revealed that a local outbreak of the Alpha variant in two Swiss cities was observable in wastewater up to 13 d before being first reported in clinical samples. We further confirmed the ability of COJAC to detect emerging variants early for the Delta variant by analysing an additional 1,339 wastewater samples. While sequencing data of single wastewater samples provide limited precision for the quantification of relative prevalence of a variant, we show that replicate and close-meshed longitudinal sequencing allow for robust estimation not only of the local prevalence but also of the transmission fitness advantage of any variant. We conclude that genomic sequencing and our computational analysis can provide population-level estimates of prevalence and fitness of emerging variants from wastewater samples earlier and on the basis of substantially fewer samples than from clinical samples. Our framework is being routinely used in large national projects in Switzerland and the UK

    Polymerase-directed synthesis of C5-ethynyl locked nucleic acids

    Get PDF
    Modified nucleic acids have considerable potential in nanobiotechnology for the development of nanomedicines and new materials. Locked nucleic acid (LNA) is one of the most prominent nucleic acid analogues reported so far and we herein for the first time report the enzymatic incorporation of LNA-U and C5-ethynyl LNA-U nucleotides into oligonucleotides. Phusion High Fidelity and KOD DNA polymerases efficiently incorporated LNA-U and C5-ethynyl LNA-U nucleotides into a DNA strand and T7 RNA polymerase successfully accepted the LNA-U nucleoside 5′-triphosphate as substrate for RNA transcripts
    corecore