222 research outputs found

    The tyrosine kinase inhibitor ZD6474 inhibits tumour growth in an intracerebral rat glioma model

    Get PDF
    Malignant glioma is characterised by extensive neovascularisation, principally influenced by vascular endothelial growth factor (VEGF). ZD6474 is a potent inhibitor of VEGF-R2 tyrosine kinase activity, but with additional inhibitory effects on other growth factors. In this study, we have investigated the effects of ZD6474 with regard to tumour growth, neovascularisation, proliferation and apoptosis in the intracerebral rat glioma model, BT4C. ZD6474 (50 and 100 mg kg−1) was given as a daily oral gavage. Animals were killed on day 19 and tumour volume was measured. Sections were stained for factor VIII, Ki-67 and for apoptosis. The ability of ZD6474 to inhibit cell growth directly was examined in vitro, using the glioma cell line BT4C and the transformed rat brain endothelial cell line RBE4. Cell growth was analysed with fluorometric microculture cytotoxicity assay to quantify the cytotoxic effects. ZD6474 significantly decreased tumour volume compared to controls. Microvascular density increased after treatment with ZD6474, and tumour cell proliferation index was reduced. There was also an increase in tumour cell apoptosis. In vitro, the growth of both cell lines was significantly reduced. The results reported justify further experimental investigations concerning the effects of ZD6474 in malignant glioma alone or in combination with other modalities

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    GO Explorer: A gene-ontology tool to aid in the interpretation of shotgun proteomics data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge.</p> <p>Results</p> <p>Here we present a new algorithm, termed GO Explorer (GOEx), that leverages the gene ontology (GO) to aid in the interpretation of proteomic data. GOEx stands out because it combines data from protein fold changes with GO over-representation statistics to help draw conclusions. Moreover, it is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. Its usefulness is demonstrated by applying it to help interpret the effects of perillyl alcohol, a natural chemotherapeutic agent, on glioblastoma multiform cell lines (A172). We used a new multi-surfactant shotgun proteomic strategy and identified more than 2600 proteins; GOEx pinpointed key sets of differentially expressed proteins related to cell cycle, alcohol catabolism, the Ras pathway, apoptosis, and stress response, to name a few.</p> <p>Conclusion</p> <p>GOEx facilitates organism-specific studies by leveraging GO and providing a rich graphical user interface. It is a simple to use tool, specialized for biologists who wish to analyze spectral counting data from shotgun proteomics. GOEx is available at <url>http://pcarvalho.com/patternlab</url>.</p

    Retinoblastoma Loss Modulates DNA Damage Response Favoring Tumor Progression

    Get PDF
    Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS), crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR) activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb) inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRasV12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies

    Septic AKI in ICU patients. diagnosis, pathophysiology, and treatment type, dosing, and timing: a comprehensive review of recent and future developments

    Get PDF
    Evidence is accumulating showing that septic acute kidney injury (AKI) is different from non-septic AKI. Specifically, a large body of research points to apoptotic processes underlying septic AKI. Unravelling the complex and intertwined apoptotic and immuno-inflammatory pathways at the cellular level will undoubtedly create new and exciting perspectives for the future development (e.g., caspase inhibition) or refinement (specific vasopressor use) of therapeutic strategies. Shock complicating sepsis may cause more AKI but also will render treatment of this condition in an hemodynamically unstable patient more difficult. Expert opinion, along with the aggregated results of two recent large randomized trials, favors continuous renal replacement therapy (CRRT) as preferential treatment for septic AKI (hemodynamically unstable). It is suggested that this approach might decrease the need for subsequent chronic dialysis. Large-scale introduction of citrate as an anticoagulant most likely will change CRRT management in intensive care units (ICU), because it not only significantly increases filter lifespan but also better preserves filter porosity. A possible role of citrate in reducing mortality and morbidity, mainly in surgical ICU patients, remains to be proven. Also, citrate administration in the predilution mode appears to be safe and exempt of relevant side effects, yet still requires rigorous monitoring. Current consensus exists about using a CRRT dose of 25 ml/kg/h in non-septic AKI. However, because patients should not be undertreated, this implies that doses as high as 30 to 35 ml/kg/h must be prescribed to account for eventual treatment interruptions. Awaiting results from large, ongoing trials, 35 ml/kg/h should remain the standard dose in septic AKI, particularly when shock is present. To date, exact timing of CRRT is not well defined. A widely accepted composite definition of timing is needed before an appropriate study challenging this major issue can be launched

    Microenvironmental adaptation of experimental tumours to chronic vs acute hypoxia

    Get PDF
    This study investigated long-term microenvironmental responses (oxygenation, perfusion, metabolic status, proliferation, vascular endothelial growth factor (VEGF) expression and vascularisation) to chronic hypoxia in experimental tumours. Experiments were performed using s.c.-implanted DS-sarcomas in rats. In order to induce more pronounced tumour hypoxia, one group of animals was housed in a hypoxic atmosphere (8% O2) for the whole period of tumour growth (chronic hypoxia). A second group was acutely exposed to inspiratory hypoxia for only 20 min prior to the measurements (acute hypoxia), whereas animals housed under normal atmospheric conditions served as controls. Acute hypoxia reduced the median oxygen partial pressure (pO2) dramatically (1 vs 10 mmHg in controls), whereas in chronically hypoxic tumours the pO2 was significantly improved (median pO2=4 mmHg), however not reaching the control level. These findings reflect the changes in tumour perfusion where acutely hypoxic tumours show a dramatic reduction of perfused tumour vessels (maybe the result of a simultaneous reduction in arterial blood pressure). In animals under chronic inspiratory hypoxia, the number of perfused vessels increased (compared to acute hypoxia), although the perfusion pattern found in control tumours was not reached. In the chronically hypoxic animals, tumour cell proliferation and tumour growth were significantly reduced, whereas no differences in VEGF expression and vascular density between these groups were observed. These results suggest that long-term adaptation of tumours to chronic hypoxia in vivo, while not affecting vascularity, does influence the functional status of the microvessels in favour of a more homogeneous perfusion

    Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study

    Get PDF
    BACKGROUND: The time required for radiographic union following femoral fracture increases with age in both humans and rats for unknown reasons. Since abnormalities in fracture innervation will slow skeletal healing, we explored whether abnormal mRNA expression of genes related to nerve cell activity in the older rats was associated with the slowing of skeletal repair. METHODS: Simple, transverse, mid-shaft, femoral fractures with intramedullary rod fixation were induced in anaesthetized female Sprague-Dawley rats at 6, 26, and 52 weeks of age. At 0, 0.4, 1, 2, 4, and 6 weeks after fracture, a bony segment, one-third the length of the femur, centered on the fracture site, including the external callus, cortical bone, and marrow elements, was harvested. cRNA was prepared and hybridized to 54 Affymetrix U34A microarrays (3/age/time point). RESULTS: The mRNA levels of 62 genes related to neural function were affected by fracture. Of the total, 38 genes were altered by fracture to a similar extent at the three ages. In contrast, eight neural genes showed prolonged down-regulation in the older rats compared to the more rapid return to pre-fracture levels in younger rats. Seven genes were up-regulated by fracture more in the younger rats than in the older rats, while nine genes were up-regulated more in the older rats than in the younger. CONCLUSIONS: mRNA of 24 nerve-related genes responded differently to fracture in older rats compared to young rats. This differential expression may reflect altered cell function at the fracture site that may be causally related to the slowing of fracture healing with age or may be an effect of the delayed healing

    Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling

    Get PDF
    Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets.National Science Foundation (U.S.) (DB1-0821391)National Institutes of Health (U.S.) (Grant U54-CA112967)National Institutes of Health (U.S.) (Grant R01-GM089903)National Institutes of Health (U.S.) (P30-ES002109

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio
    corecore