155 research outputs found

    Generation of dendritic cell-based vaccines for cancer therapy

    Get PDF
    Dendritic cells play a major role in the generation of immunity against tumour cells. They can be grown under various culture conditions, which influence the phenotypical and functional properties of dendritic cells and thereby the consecutive immune response mainly executed by T cells. Here we discuss various conditions, which are important during generation and administration of dendritic cells to elicit a tumouricidal T cell-based immune response

    A Comparison of rpoB and 16S rRNA as Markers in Pyrosequencing Studies of Bacterial Diversity

    Get PDF
    Background: The 16S rRNA gene is the gold standard in molecular surveys of bacterial and archaeal diversity, but it has the disadvantages that it is often multiple-copy, has little resolution below the species level and cannot be readily interpreted in an evolutionary framework. We compared the 16S rRNA marker with the single-copy, protein-coding rpoB marker by amplifying and sequencing both from a single soil sample. Because the higher genetic resolution of the rpoB gene prohibits its use as a universal marker, we employed consensus-degenerate primers targeting the Proteobacteria. <p/>Methodology/Principal Findings: Pyrosequencing can be problematic because of the poor resolution of homopolymer runs. As these erroneous runs disrupt the reading frame of protein-coding sequences, removal of sequences containing nonsense mutations was found to be a valuable filter in addition to flowgram-based denoising. Although both markers gave similar estimates of total diversity, the rpoB marker revealed more species, requiring an order of magnitude fewer reads to obtain 90% of the true diversity. The application of population genetic methods was demonstrated on a particularly abundant sequence cluster. <p/>Conclusions/Significance: The rpoB marker can be a complement to the 16S rRNA marker for high throughput microbial diversity studies focusing on specific taxonomic groups. Additional error filtering is possible and tests for recombination or selection can be employed

    IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospital strains of <it>Enterococcus faecium </it>could be characterized and typed by various molecular methods (MLST, AFLP, MLVA) and allocated to a distinct clonal complex known as MLST CC17. However, these techniques are laborious, time-consuming and cost-intensive. Our aim was to identify hospital <it>E. faecium </it>strains and differentiate them from colonizing and animal variants by a simple, inexpensive and reliable PCR-based screening assay. We describe here performance and predictive value of a single PCR detecting the insertion element, IS<it>16</it>, to identify hospital <it>E. faecium </it>isolates within a collection of 260 strains of hospital, animal and human commensal origins.</p> <p>Methods</p> <p>Specific primers were selected amplifying a 547-bp fragment of IS<it>16</it>. Presence of IS<it>16 </it>was determined by PCR screenings among the 260 <it>E. faecium </it>isolates. Distribution of IS<it>16 </it>was compared with a prevalence of commonly used markers for hospital strains, <it>esp </it>and <it>hyl</it><sub><it>Efm</it></sub>. All isolates were typed by MLST and partly by PFGE. Location of IS<it>16 </it>was analysed by Southern hybridization of plasmid and chromosomal DNA.</p> <p>Results</p> <p>IS<it>16 </it>was exclusively distributed only among 155 invasive strains belonging to the clonal complex of hospital-associated strains ("CC17"; 28 MLST types) and various vancomycin resistance genotypes (<it>van</it>A/B/negative). The five invasive IS<it>16</it>-negative strains did not belong to the clonal complex of hospital-associated strains (CC17). IS<it>16 </it>was absent in all but three isolates from 100 livestock, food-associated and human commensal strains ("non-CC17"; 64 MLST types). The three IS<it>16</it>-positive human commensal isolates revealed MLST types belonging to the clonal complex of hospital-associated strains (CC17). The values predicting a hospital-associated strain ("CC17") deduced from presence and absence of IS<it>16 </it>was 100% and thus superior to screening for the presence of <it>esp </it>(66%) and/or <it>hyl</it><sub><it>Efm </it></sub>(46%). Southern hybridizations revealed chromosomal as well as plasmid localization of IS<it>16</it>.</p> <p>Conclusions</p> <p>This simple screening assay for insertion element IS<it>16 </it>is capable of differentiating hospital-associated from human commensal, livestock- and food-associated <it>E. faecium </it>strains and thus allows predicting the epidemic strengths or supposed pathogenic potential of a given <it>E. faecium </it>isolate identified within the nosocomial setting.</p

    IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospital strains of <it>Enterococcus faecium </it>could be characterized and typed by various molecular methods (MLST, AFLP, MLVA) and allocated to a distinct clonal complex known as MLST CC17. However, these techniques are laborious, time-consuming and cost-intensive. Our aim was to identify hospital <it>E. faecium </it>strains and differentiate them from colonizing and animal variants by a simple, inexpensive and reliable PCR-based screening assay. We describe here performance and predictive value of a single PCR detecting the insertion element, IS<it>16</it>, to identify hospital <it>E. faecium </it>isolates within a collection of 260 strains of hospital, animal and human commensal origins.</p> <p>Methods</p> <p>Specific primers were selected amplifying a 547-bp fragment of IS<it>16</it>. Presence of IS<it>16 </it>was determined by PCR screenings among the 260 <it>E. faecium </it>isolates. Distribution of IS<it>16 </it>was compared with a prevalence of commonly used markers for hospital strains, <it>esp </it>and <it>hyl</it><sub><it>Efm</it></sub>. All isolates were typed by MLST and partly by PFGE. Location of IS<it>16 </it>was analysed by Southern hybridization of plasmid and chromosomal DNA.</p> <p>Results</p> <p>IS<it>16 </it>was exclusively distributed only among 155 invasive strains belonging to the clonal complex of hospital-associated strains ("CC17"; 28 MLST types) and various vancomycin resistance genotypes (<it>van</it>A/B/negative). The five invasive IS<it>16</it>-negative strains did not belong to the clonal complex of hospital-associated strains (CC17). IS<it>16 </it>was absent in all but three isolates from 100 livestock, food-associated and human commensal strains ("non-CC17"; 64 MLST types). The three IS<it>16</it>-positive human commensal isolates revealed MLST types belonging to the clonal complex of hospital-associated strains (CC17). The values predicting a hospital-associated strain ("CC17") deduced from presence and absence of IS<it>16 </it>was 100% and thus superior to screening for the presence of <it>esp </it>(66%) and/or <it>hyl</it><sub><it>Efm </it></sub>(46%). Southern hybridizations revealed chromosomal as well as plasmid localization of IS<it>16</it>.</p> <p>Conclusions</p> <p>This simple screening assay for insertion element IS<it>16 </it>is capable of differentiating hospital-associated from human commensal, livestock- and food-associated <it>E. faecium </it>strains and thus allows predicting the epidemic strengths or supposed pathogenic potential of a given <it>E. faecium </it>isolate identified within the nosocomial setting.</p

    The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool

    Get PDF
    Outbreaks of hospital infections caused by multidrug resistant Acinetobacter baumannii strains are of increasing concern worldwide. Although it has been reported that particular outbreak strains are geographically widespread, little is known about the diversity and phylogenetic relatedness of A. baumannii clonal groups. Sequencing of internal portions of seven housekeeping genes (total 2,976 nt) was performed in 154 A. baumannii strains covering the breadth of known diversity and including representatives of previously recognized international clones, and in 19 representatives of other Acinetobacter species. Restricted amounts of diversity and a star-like phylogeny reveal that A. baumannii is a genetically compact species that suffered a severe bottleneck in the recent past, possibly linked to a restricted ecological niche. A. baumannii is neatly demarcated from its closest relative (genomic species 13TU) and other Acinetobacter species. Multilocus sequence typing analysis demonstrated that the previously recognized international clones I to III correspond to three clonal complexes, each made of a central, predominant genotype and few single locus variants, a hallmark of recent clonal expansion. Whereas antimicrobial resistance was almost universal among isolates of these and a novel international clone (ST15), isolates of the other genotypes were mostly susceptible. This dichotomy indicates that antimicrobial resistance is a major selective advantage that drives the ongoing rapid clonal expansion of these highly problematic agents of nosocomial infections

    Cultural Property Protection in the Context of Military Operations: The Case of Uruk, Iraq

    Get PDF
    This paper deals with the use of military or militarized experts for cultural property protection (CPP) during times of conflict. CPP activities generally take place within a juridical framework that gives obligations for all parties involved, primarily the 1954 Hague Convention for the Protection of Cultural Property in the Event of Armed Conflict, and attention is paid to various implications and challenges that occur when implementing military CPP obligations within this framework. To illustrate matters, the paper details a specific case study from the author’s own field experience in the safeguarding of the archaeological site of Uruk in Iraq. Aspects, including economic, legal, financial, and educational implications, are presented and these are especially relevant since they apply (to an extent) to other situations, such as the recent cultural disasters in Egypt, Libya, and Syria. The Uruk case study is used to suggest a number of key elements that are vital for the implementation of an effective CPP strategy in the context of military operations. Overall, the importance of international cooperation, training, and education, along with the assistance of civil reach-back capabilities, is emphasized. The paper argues that an effective way to protect Cultural Property during armed conflicts is through military channels and with military logistics and tools. To fulfil CPP in agreement with International Humanitarian Law (IHL) joint preparations in peacetime are necessary. The handover of military initiated CPP projects to civil authorities has to take place as soon as the situation permits. The paper concludes with a set of recommendations

    Development of a Chromosomally Integrated Metabolite-Inducible Leu3p-α-IPM “Off-On” Gene Switch

    Get PDF
    Background: Present technology uses mostly chimeric proteins as regulators and hormones or antibiotics as signals to induce spatial and temporal gene expression. Methodology/Principal Findings: Here, we show that a chromosomally integrated yeast ‘Leu3p-a-IRM ’ system constitutes a ligand-inducible regulatory ‘‘off-on’ ’ genetic switch with an extensively dynamic action area. We find that Leu3p acts as an active transcriptional repressor in the absence and as an activator in the presence of a-isopropylmalate (a-IRM) in primary fibroblasts isolated from double transgenic mouse embryos bearing ubiquitously expressing Leu3p and a Leu3p regulated GFP reporter. In the absence of the branched amino acid biosynthetic pathway in animals, metabolically stable a-IPM presents an EC 50 equal to 0.8837 mM and fast ‘‘OFF-ON’ ’ kinetics (t 50ON = 43 min, t 50OFF = 2.18 h), it enters the cells via passive diffusion, while it is non-toxic to mammalian cells and to fertilized mouse eggs cultured ex vivo. Conclusions/Significance: Our results demonstrate that the ‘Leu3p-a-IRM ’ constitutes a simpler and safer system for inducible gene expression in biomedical applications

    Characterization of Novel Paternal ncRNAs at the Plagl1 Locus, Including Hymai, Predicted to Interact with Regulators of Active Chromatin

    Get PDF
    Genomic imprinting is a complex epigenetic mechanism of transcriptional control that utilizes DNA methylation and histone modifications to bring about parent-of-origin specific monoallelic expression in mammals. Genes subject to imprinting are often organised in clusters associated with large non-coding RNAs (ncRNAs), some of which have cis-regulatory functions. Here we have undertaken a detailed allelic expression analysis of an imprinted domain on mouse proximal chromosome 10 comprising the paternally expressed Plagl1 gene. We identified three novel Plagl1 transcripts, only one of which contains protein-coding exons. In addition, we characterised two unspliced ncRNAs, Hymai, the mouse orthologue of HYMAI, and Plagl1it (Plagl1 intronic transcript), a transcript located in intron 5 of Plagl1. Imprinted expression of these novel ncRNAs requires DNMT3L-mediated maternal DNA methylation, which is also indispensable for establishing the correct chromatin profile at the Plagl1 DMR. Significantly, the two ncRNAs are retained in the nucleus, consistent with a potential regulatory function at the imprinted domain. Analysis with catRAPID, a protein-ncRNA association prediction algorithm, suggests that Hymai and Plagl1it RNAs both have potentially high affinity for Trithorax chromatin regulators. The two ncRNAs could therefore help to protect the paternal allele from DNA methylation by attracting Trithorax proteins that mediate H3 lysine-4 methylation

    Towards a Wolbachia Multilocus Sequence Typing system : discrimination of Wolbachia strains present in Drosophila species

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Current Microbiology 53 (2006): 388-395, doi:10.1007/s00284-006-0054-1.Among the diverse maternally inherited symbionts in arthropods, Wolbachia are the most common and infect over 20% of all species. In a departure from traditional genotyping or phylogenetic methods relying on single Wolbachia genes, the present study represents an initial Multilocus Sequence Typing (MLST) analysis to discriminate closely related Wolbachia pipientis strains, and additional data on sequence diversity in Wolbachia. We report new phylogenetic characterization of four genes (aspC, atpD, sucB and pdhB), and provide an expanded analysis of markers described in previous studies (16S rDNA, ftsZ, groEL, dnaA and gltA). MLST analysis of the bacterial strains present in sixteen different Drosophila-Wolbachia associations detected four distinct clonal complexes that also corresponded to maximum-likelihood identified phylogenetic clades. Among the sixteen associations analyzed, six could not be assigned to MLST clonal complexes and were also shown to be in conflict with relationships predicted by maximum-likelihood phylogenetic inferences. The results demonstrate the discriminatory power of MLST for identifying strains and clonal lineages of Wolbachia and provide a robust foundation for studying the ecology and evolution of this widespread endosymbiont.This work was partially supported by intramural funds of the University of Ioannina to K. Bourtzis, by grants to J.J. Wernegreen from the National Institutes of Health (R01 GM62626-01) and the NASA Astrobiology Institute (NNA04CC04A), and to J.H. Werren and J.J. Wernegreen from the National Science Foundation (EF-0328363)
    corecore