80 research outputs found

    Molecular markers of risk of subsequent invasive breast cancer in women with ductal carcinoma in situ: protocol for a population-based cohort study

    Get PDF
    INTRODUCTION: Ductal carcinoma in situ (DCIS) of the breast is a non-obligate precursor of invasive breast cancer (IBC). Many DCIS patients are either undertreated or overtreated. The overarching goal of the study described here is to facilitate detection of patients with DCIS at risk of IBC development. Here, we propose to use risk factor data and formalin-fixed paraffin-embedded (FFPE) DCIS tissue from a large, ethnically diverse, population-based cohort of 8175 women with a first diagnosis of DCIS and followed for subsequent IBC to: identify/validate miRNA expression changes in DCIS tissue associated with risk of subsequent IBC; evaluate ipsilateral IBC risk in association with two previously identified marker sets (triple immunopositivity for p16, COX-2, Ki67; Oncotype DX Breast DCIS score); examine the association of risk factor data with IBC risk. METHODS AND ANALYSIS: We are conducting a series of case-control studies nested within the cohort. Cases are women with DCIS who developed subsequent IBC; controls (2/case) are matched to cases on calendar year of and age at DCIS diagnosis. We project 485 cases/970 controls in the aim focused on risk factors. We estimate obtaining FFPE tissue for 320 cases/640 controls for the aim focused on miRNAs; of these, 173 cases/346 controls will be included in the aim focused on p16, COX-2 and Ki67 immunopositivity, and of the latter, 156 case-control pairs will be included in the aim focused on the Oncotype DX Breast DCIS score®. Multivariate conditional logistic regression will be used for statistical analyses. ETHICS AND DISSEMINATION: Ethics approval was obtained from the Institutional Review Boards of Albert Einstein College of Medicine (IRB 2014-3611), Kaiser Permanente Colorado, Kaiser Permanente Hawaii, Henry Ford Health System, Mayo Clinic, Marshfield Clinic Research Institute and Hackensack Meridian Health, and from Lifespan Research Protection Office. The study results will be presented at meetings and published in peer-reviewed journals

    Overview of the massive young star-forming complex study in infrared and X-ray (MYStIX) project

    Get PDF
    The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) seeks to characterize 20 OB-dominated young clusters and their environs at distances d ≤ 4 kpc using imaging detectors on the Chandra X-ray Observatory, Spitzer Space Telescope, and the United Kingdom InfraRed Telescope. The observational goals are to construct catalogs of star-forming complex stellar members with well-defined criteria and maps of nebular gas (particularly of hot X-ray-emitting plasma) and dust. A catalog of MYStIX Probable Complex Members with several hundred OB stars and 31,784 low-mass pre-main sequence stars is assembled. This sample and related data products will be used to seek new empirical constraints on theoretical models of cluster formation and dynamics, mass segregation, OB star formation, star formation triggering on the periphery of H II regions, and the survivability of protoplanetary disks in H II regions. This paper gives an introduction and overview of the project, covering the data analysis methodology and application to two star-forming regions: NGC 2264 and the Trifid Nebula

    A prospective study of XRCC1 (X-ray cross-complementing group 1) polymorphisms and breast cancer risk

    Get PDF
    INTRODUCTION: The gene XRCC1 (X-ray repair cross-complementing group 1) encodes a protein involved in DNA base excision repair. Two non-synonymous polymorphisms in XRCC1 (Arg194Trp and Arg399Gln) have been shown to alter DNA repair capacity in some studies in vitro. However, results of previous association studies of these two XRCC1 variants and breast cancer have been inconsistent. We examined the association between polymorphisms in XRCC1 and breast cancer in the American Cancer Society Cancer Prevention Study II (CPS-II) Nutrition Cohort, a large prospective study of cancer incidence in the USA. METHODS: Among the 21,965 women who were cancer-free in 1992 and gave blood between 1998 and 2001, 502 postmenopausal breast cancer cases were diagnosed between 1992 and 2001; 502 controls were matched to cases on age, race/ethnicity, and date of blood collection. Genotyping on DNA extracted from buffy coat was performed with Taqman. Conditional logistic regression was used to examine the association between each polymorphism and breast cancer risk controlling for breast cancer risk factors. We also examined whether factors associated with DNA damage, such as smoking and antioxidant intake, modified the association between XRCC1 polymorphisms and breast cancer. RESULTS: We observed a significant inverse association between Trp194 carriers (Trp/Trp and Trp/Arg) compared with Trp194 non-carriers in relation to breast cancer (Arg/Arg) (odds ratio (OR) 0.62, 95% confidence interval (CI) 0.40 to 0.95). The inverse association between breast cancer and Trp194 carriers compared with non-carriers was slightly stronger among smokers (OR 0.47, 95% CI 0.24 to 0.94) than never smokers (OR 0.78, 95% CI 0.43 to 1.40). An increased risk associated with the Arg399Gln polymorphism (Gln/Gln versus Arg/Arg) was observed only among women who reported ever smoking cigarettes (OR 2.76, 95% CI 1.36 to 5.63), and not in women who were lifelong non-smokers (OR 0.64, 95% CI 0.33 to 1.26). No other factor examined modified the association between XRCC1 polymorphisms and breast cancer risk. CONCLUSION: Our results support the hypothesis that genetic variation in XRCC1, particularly in Arg194Trp, may influence postmenopausal breast cancer risk. In our study, genetic variation in XRCC1 Arg399Gln was associated with breast cancer risk only among women with a history of smoking cigarettes

    Vitamin D pathway gene polymorphisms, diet, and risk of postmenopausal breast cancer: a nested case-control study

    Get PDF
    INTRODUCTION: Vitamin D receptor (VDR) polymorphisms have been inconsistently associated with breast cancer risk. Whether risk is influenced by polymorphisms in other vitamin D metabolism genes and whether calcium or vitamin D intake modifies risk by genotype have not been evaluated. METHODS: We conducted a nested case-control study within the Cancer Prevention Study II Nutrition Cohort of associations between breast cancer and four VDR single-nucleotide polymorphisms (SNPs), Bsm1,Apa1,Taq1, and Fok1, a poly(A) microsatellite, and associated haplotypes (baTL and BAtS). We also examined one SNP in the 24-hydroxylase gene (CYP24A1) and two in the vitamin D-binding protein (group-specific component [GC]) gene. Participants completed a questionnaire on diet and medical history at baseline in 1992. This study includes 500 postmenopausal breast cancer cases and 500 controls matched by age, race/ethnicity, and date of blood collection. RESULTS: Incident breast cancer was not associated with any genotype examined. However, women with the Bsm1 bb SNP who consumed greater than the median intake of total calcium (≥902 mg/day) had lower odds of breast cancer compared to women with the Bb or BB genotype and less than the median calcium intake (odds ratio 0.61, 95% confidence interval 0.38 to 0.96; p(interaction )= 0.01). Similar interactions were observed for Taq1 (T allele) and the poly(A) (LL) repeat. CONCLUSION: We found no overall association between selected vitamin D pathway genes and postmenopausal breast cancer risk. However, certain VDR gene polymorphisms were associated with lower risk in women consuming high levels of calcium, suggesting that dietary factors may modify associations by VDR genotype

    Vitamin D Receptor Polymorphisms and Breast Cancer Risk: Results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium

    Get PDF
    Background: Vitamin D is hypothesized to lower the risk of breast cancer by inhibiting cell proliferation via the nuclear vitamin D receptor (VDR). Two common single nucleotide polymorphisms (SNP) in the VDR gene ( VDR ), rs1544410 ( Bsm I), and rs2228570 ( Fok I), have been inconsistently associated with breast cancer risk. Increased risk has been reported for the Fok I ff genotype, which encodes a less transcriptionally active isoform of VDR , and reduced risk has been reported for the Bsm I BB genotype, a SNP in strong linkage disequilibrium with a 3′-untranslated region, which may influence VDR mRNA stability. Methods: We pooled data from 6 prospective studies in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium to examine associations between these SNPs and breast cancer among >6,300 cases and 8,100 controls for each SNP using conditional logistic regression. Results: The odds ratio (OR) for the rs2228570 ( Fok I) ff versus FF genotype in the overall population was statistically significantly elevated [OR, 1.16; 95% confidence interval (95% CI), 1.04-1.28] but was weaker once data from the cohort with previously published positive findings were removed (OR, 1.10; 95% CI, 0.98-1.24). No association was noted between rs1544410 ( Bsm I) BB and breast cancer risk overall (OR, 0.98; 95% CI, 0.89-1.09), but the BB genotype was associated with a significantly lower risk of advanced breast cancer (OR, 0.74; 95% CI, 0.60-0.92). Conclusions: Although the evidence for independent contributions of these variants to breast cancer susceptibility remains equivocal, future large studies should integrate genetic variation in VDR with biomarkers of vitamin D status. (Cancer Epidemiol Biomarkers Prev 2009;18(1):297–305

    IGF-1, IGFBP-1, and IGFBP-3 Polymorphisms Predict Circulating IGF Levels but Not Breast Cancer Risk: Findings from the Breast and Prostate Cancer Cohort Consortium (BPC3)

    Get PDF
    IGF-1 has been shown to promote proliferation of normal epithelial breast cells, and the IGF pathway has also been linked to mammary carcinogenesis in animal models. We comprehensively examined the association between common genetic variation in the IGF1, IGFBP1, and IGFBP3 genes in relation to circulating IGF-I and IGFBP-3 levels and breast cancer risk within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). This analysis included 6,912 breast cancer cases and 8,891 matched controls (n = 6,410 for circulating IGF-I and 6,275 for circulating IGFBP-3 analyses) comprised primarily of Caucasian women drawn from six large cohorts. Linkage disequilibrium and haplotype patterns were characterized in the regions surrounding IGF1 and the genes coding for two of its binding proteins, IGFBP1 and IGFBP3. In total, thirty haplotype-tagging single nucleotide polymorphisms (htSNP) were selected to provide high coverage of common haplotypes; the haplotype structure was defined across four haplotype blocks for IGF1 and three for IGFBP1 and IGFBP3. Specific IGF1 SNPs individually accounted for up to 5% change in circulating IGF-I levels and individual IGFBP3 SNPs were associated up to 12% change in circulating IGFBP-3 levels, but no associations were observed between these polymorphisms and breast cancer risk. Logistic regression analyses found no associations between breast cancer and any htSNPs or haplotypes in IGF1, IGFBP1, or IGFBP3. No effect modification was observed in analyses stratified by menopausal status, family history of breast cancer, body mass index, or postmenopausal hormone therapy, or for analyses stratified by stage at diagnosis or hormone receptor status. In summary, the impact of genetic variation in IGF1 and IGFBP3 on circulating IGF levels does not appear to substantially influence breast cancer risk substantially among primarily Caucasian postmenopausal women
    • …
    corecore