1,156 research outputs found

    AMS measurements of cosmogenic and supernova-ejected radionuclides in deep-sea sediment cores

    Full text link
    Samples of two deep-sea sediment cores from the Indian Ocean are analyzed with accelerator mass spectrometry (AMS) to search for traces of recent supernova activity around 2 Myr ago. Here, long-lived radionuclides, which are synthesized in massive stars and ejected in supernova explosions, namely 26Al, 53Mn and 60Fe, are extracted from the sediment samples. The cosmogenic isotope 10Be, which is mainly produced in the Earths atmosphere, is analyzed for dating purposes of the marine sediment cores. The first AMS measurement results for 10Be and 26Al are presented, which represent for the first time a detailed study in the time period of 1.7-3.1 Myr with high time resolution. Our first results do not support a significant extraterrestrial signal of 26Al above terrestrial background. However, there is evidence that, like 10Be, 26Al might be a valuable isotope for dating of deep-sea sediment cores for the past few million years.Comment: 5 pages, 2 figures, Proceedings of the Heavy Ion Accelerator Symposium on Fundamental and Applied Science, 2013, will be published by the EPJ Web of conference

    Combinatorial Assortment Optimization

    Full text link
    Assortment optimization refers to the problem of designing a slate of products to offer potential customers, such as stocking the shelves in a convenience store. The price of each product is fixed in advance, and a probabilistic choice function describes which product a customer will choose from any given subset. We introduce the combinatorial assortment problem, where each customer may select a bundle of products. We consider a model of consumer choice where the relative value of different bundles is described by a valuation function, while individual customers may differ in their absolute willingness to pay, and study the complexity of the resulting optimization problem. We show that any sub-polynomial approximation to the problem requires exponentially many demand queries when the valuation function is XOS, and that no FPTAS exists even for succinctly-representable submodular valuations. On the positive side, we show how to obtain constant approximations under a "well-priced" condition, where each product's price is sufficiently high. We also provide an exact algorithm for kk-additive valuations, and show how to extend our results to a learning setting where the seller must infer the customers' preferences from their purchasing behavior

    IgG light chain-independent secretion of heavy chain dimers: consequence for therapeutic antibody production and design

    Get PDF
    Rodent monoclonal antibodies with specificity towards important biological targets are developed for therapeutic use by a process of humanisation. This process involves the creation of molecules, which retain the specificity of the rodent antibody but contain predominantly human coding sequence. Here we show that some humanised heavy chains can fold, form dimers and be secreted even in the absence of light chain. Quality control of recombinant antibody assembly in vivo is thought to rely upon folding of the heavy chain CH1 domain. This domain acts as a switch for secretion, only folding upon interaction with the light chain CL domain. We show that the secreted heavy-chain dimers contain folded CH1 domains and contribute to the heterogeneity of antibody species secreted during the expression of therapeutic antibodies. This subversion of the normal quality control process is dependent upon the heavy chain variable domain, is prevalent with engineered antibodies and can occur when only the Fab fragments are expressed. This discovery will impact on the efficient production of both humanised antibodies as well as the design of novel antibody formats

    Line-distortion, Bandwidth and Path-length of a graph

    Full text link
    We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson-Seymour's path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show: - if a graph GG can be embedded into the line with distortion kk, then GG admits a Robertson-Seymour's path-decomposition with bags of diameter at most kk in GG; - for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem; - there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph; - AT-free graphs and some intersection families of graphs have path-length at most 2; - for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem

    Thresholded Covering Algorithms for Robust and Max-Min Optimization

    Full text link
    The general problem of robust optimization is this: one of several possible scenarios will appear tomorrow, but things are more expensive tomorrow than they are today. What should you anticipatorily buy today, so that the worst-case cost (summed over both days) is minimized? Feige et al. and Khandekar et al. considered the k-robust model where the possible outcomes tomorrow are given by all demand-subsets of size k, and gave algorithms for the set cover problem, and the Steiner tree and facility location problems in this model, respectively. In this paper, we give the following simple and intuitive template for k-robust problems: "having built some anticipatory solution, if there exists a single demand whose augmentation cost is larger than some threshold, augment the anticipatory solution to cover this demand as well, and repeat". In this paper we show that this template gives us improved approximation algorithms for k-robust Steiner tree and set cover, and the first approximation algorithms for k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios (except for multicut) are almost best possible. As a by-product of our techniques, we also get algorithms for max-min problems of the form: "given a covering problem instance, which k of the elements are costliest to cover?".Comment: 24 page

    The Age-Redshift Relation for Standard Cosmology

    Full text link
    We present compact, analytic expressions for the age-redshift relation τ(z)\tau(z) for standard Friedmann-Lema\^ \itre-Robertson-Walker (FLRW) cosmology. The new expressions are given in terms of incomplete Legendre elliptic integrals and evaluate much faster than by direct numerical integration.Comment: 13 pages, 3 figure

    Detecting and Characterizing Small Dense Bipartite-like Subgraphs by the Bipartiteness Ratio Measure

    Full text link
    We study the problem of finding and characterizing subgraphs with small \textit{bipartiteness ratio}. We give a bicriteria approximation algorithm \verb|SwpDB| such that if there exists a subset SS of volume at most kk and bipartiteness ratio θ\theta, then for any 0<ϵ<1/20<\epsilon<1/2, it finds a set SS' of volume at most 2k1+ϵ2k^{1+\epsilon} and bipartiteness ratio at most 4θ/ϵ4\sqrt{\theta/\epsilon}. By combining a truncation operation, we give a local algorithm \verb|LocDB|, which has asymptotically the same approximation guarantee as the algorithm \verb|SwpDB| on both the volume and bipartiteness ratio of the output set, and runs in time O(ϵ2θ2k1+ϵln3k)O(\epsilon^2\theta^{-2}k^{1+\epsilon}\ln^3k), independent of the size of the graph. Finally, we give a spectral characterization of the small dense bipartite-like subgraphs by using the kkth \textit{largest} eigenvalue of the Laplacian of the graph.Comment: 17 pages; ISAAC 201

    How asynchrony affects rumor spreading time

    Get PDF
    International audienceIn standard randomized (push-pull) rumor spreading, nodes communicate in synchronized rounds. In each round every node contacts a random neighbor in order to exchange the rumor (i.e., either push the rumor to its neighbor or pull it from the neighbor). A natural asynchronous variant of this algorithm is one where each node has an independent Poisson clock with rate 1, and every node contacts a random neighbor whenever its clock ticks. This asynchronous variant is arguably a more realistic model in various settings, including message broadcasting in communication networks, and information dissemination in social networks. In this paper we study how asynchrony affects the rumor spreading time, that is, the time before a rumor originated at a single node spreads to all nodes in the graph. Our first result states that the asynchronous push-pull rumor spreading time is asymptotically bounded by the standard synchronous time. Precisely, we show that for any graph G on n nodes, where the synchronous push-pull protocol informs all nodes within T (G) rounds with high probability, the asynchronous protocol needs at most time O(T (G) + log n) to inform all nodes with high probability. On the other hand, we show that the expected synchronous push-pull rumor spreading time is bounded by O(√ n) times the expected asynchronous time. These results improve upon the bounds for both directions shown recently by Acan et al. (PODC 2015). An interesting implication of our first result is that in regular graphs, the weaker push-only variant of synchronous rumor spreading has the same asymptotic performance as the synchronous push-pull algorithm

    Mechanism Design for Perturbation Stable Combinatorial Auctions

    Full text link
    Motivated by recent research on combinatorial markets with endowed valuations by (Babaioff et al., EC 2018) and (Ezra et al., EC 2020), we introduce a notion of perturbation stability in Combinatorial Auctions (CAs) and study the extend to which stability helps in social welfare maximization and mechanism design. A CA is γ-stable\gamma\textit{-stable} if the optimal solution is resilient to inflation, by a factor of γ1\gamma \geq 1, of any bidder's valuation for any single item. On the positive side, we show how to compute efficiently an optimal allocation for 2-stable subadditive valuations and that a Walrasian equilibrium exists for 2-stable submodular valuations. Moreover, we show that a Parallel 2nd Price Auction (P2A) followed by a demand query for each bidder is truthful for general subadditive valuations and results in the optimal allocation for 2-stable submodular valuations. To highlight the challenges behind optimization and mechanism design for stable CAs, we show that a Walrasian equilibrium may not exist for γ\gamma-stable XOS valuations for any γ\gamma, that a polynomial-time approximation scheme does not exist for (2ϵ)(2-\epsilon)-stable submodular valuations, and that any DSIC mechanism that computes the optimal allocation for stable CAs and does not use demand queries must use exponentially many value queries. We conclude with analyzing the Price of Anarchy of P2A and Parallel 1st Price Auctions (P1A) for CAs with stable submodular and XOS valuations. Our results indicate that the quality of equilibria of simple non-truthful auctions improves only for γ\gamma-stable instances with γ3\gamma \geq 3
    corecore