Abstract

Motivated by recent research on combinatorial markets with endowed valuations by (Babaioff et al., EC 2018) and (Ezra et al., EC 2020), we introduce a notion of perturbation stability in Combinatorial Auctions (CAs) and study the extend to which stability helps in social welfare maximization and mechanism design. A CA is γ-stable\gamma\textit{-stable} if the optimal solution is resilient to inflation, by a factor of γ≥1\gamma \geq 1, of any bidder's valuation for any single item. On the positive side, we show how to compute efficiently an optimal allocation for 2-stable subadditive valuations and that a Walrasian equilibrium exists for 2-stable submodular valuations. Moreover, we show that a Parallel 2nd Price Auction (P2A) followed by a demand query for each bidder is truthful for general subadditive valuations and results in the optimal allocation for 2-stable submodular valuations. To highlight the challenges behind optimization and mechanism design for stable CAs, we show that a Walrasian equilibrium may not exist for γ\gamma-stable XOS valuations for any γ\gamma, that a polynomial-time approximation scheme does not exist for (2−ϵ)(2-\epsilon)-stable submodular valuations, and that any DSIC mechanism that computes the optimal allocation for stable CAs and does not use demand queries must use exponentially many value queries. We conclude with analyzing the Price of Anarchy of P2A and Parallel 1st Price Auctions (P1A) for CAs with stable submodular and XOS valuations. Our results indicate that the quality of equilibria of simple non-truthful auctions improves only for γ\gamma-stable instances with γ≥3\gamma \geq 3

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021