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ABSTRACT
In standard randomized (push-pull) rumor spreading, nodes
communicate in synchronized rounds. In each round every
node contacts a random neighbor in order to exchange the
rumor (i.e., either push the rumor to its neighbor or pull
it from the neighbor). A natural asynchronous variant of
this algorithm is one where each node has an independent
Poisson clock with rate 1, and every node contacts a ran-
dom neighbor whenever its clock ticks. This asynchronous
variant is arguably a more realistic model in various settings,
including message broadcasting in communication networks,
and information dissemination in social networks.

In this paper we study how asynchrony affects the rumor
spreading time, that is, the time before a rumor originated
at a single node spreads to all nodes in the graph. Our
first result states that the asynchronous push-pull rumor
spreading time is asymptotically bounded by the standard
synchronous time. Precisely, we show that for any graph
G on n-nodes, where the synchronous push-pull protocol
informs all nodes within T (G) rounds with high probability,
the asynchronous protocol needs at most time O(T (G) +
logn) to inform all nodes with high probability. On the
other hand, we show that the expected synchronous push-
pull rumor spreading time is bounded by O(

√
n) times the

expected asynchronous time.
These results improve upon the bounds for both directions

shown recently by Acan et al. (PODC 2015). An interesting
implication of our first result is that in regular graphs, the
weaker push-only variant of synchronous rumor spreading
has the same asymptotic performance as the synchronous
push-pull algorithm.
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1. INTRODUCTION
Broadcasting information in large networks is a funda-

mental and well-studied problem. Desirable properties of
broadcasting algorithms are efficiency, simplicity, decentral-
ization, and tolerance to changes in the network topology.
The classical abstraction is the randomized (synchronous)
rumor spreading protocol [7, 22]: Initially, a piece of infor-
mation, called rumor, is injected at a random or arbitrarily
chosen node. After that, nodes communicate in synchronous
rounds to inform each other of the rumor. In every round,
each node calls a uniformly random neighbor and establishes
a communication with its callee in order to possibly ex-
change the rumor: In the push protocol, an informed caller
pushes the rumor to its callee, while in the pull protocol, a
non-informed caller receives the rumor from its callee, if the
callee is informed. The push-pull protocol combines the push
and pull communication and allows a bi-directional rumor
exchange in each round between each caller and its callee.

Besides being of fundamental interest, rumor spreading
protocols have many direct applications, such as in the main-
tenance of distributed replicated database systems [7, 13],
failure detection [26], resource discovery [20], and data ag-
gregation [4]. As such, the rumor spreading time, i.e., the
number of rounds until all nodes in a network have received
the rumor (either in expectation or with high probability),
has been studied intensively. A large body of research work
deals with the question how the rumor spreading time is
influenced by the network topology (e.g., [8,12,15,16]), net-
work parameters such as expansion [5, 6, 17–19, 25], or the
communication modes push, pull, and push-pull (e.g., [24]).

The synchrony assumption, according to which all nodes
establish connections simultaneously in a round-by-round
fashion, has been criticized for not being plausible in many
scenarios [9–11]. Real networks typically do not have a cen-
tralized clock, and individual links are affected by frequent
changes in communication speed. Moreover, decentraliza-
tion has been emphasized as one of the main advantages
of the rumor spreading protocol, but this contradicts the
model assumption of a centralized clock. More recently the
performance of rumor spreading protocols in a natural asyn-
chronous setting, initially proposed by Boyd, Ghosh, Prab-
hakar, and Shah [4], has been considered. Here, nodes es-
tablish communications with their neighbors at times de-
termined by independent Poisson processes, rather than at
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fixed unit times. More precisely, each node is equipped with
an independent Poisson clock with rate 1, and whenever a
node’s clock ticks, the node exchanges the rumor with a
uniformly random neighbor (using push, pull, or push-pull
communication).

On the hypercube, the asynchronous push-pull protocol
corresponds to Richardson’s model for the spread of a dis-
ease, and has been investigated in the study of first-passage
percolation [3, 14]. But only recently has asynchronous ru-
mor spreading found the interest of researchers in the area
of networks, initially in order to understand information
spread in social networks. It was observed that on com-
mon network topologies modelling social networks, such as
Chung-Lu power law graphs [16] or preferential attachment
graphs [9], the push-pull protocol spreads the rumor to a
large fraction of the nodes significantly faster in the asyn-
chronous than in the synchronous model. There are even
graph topologies for which the asynchronous push-pull pro-
tocol has poly-logarithmic rumor spreading time, whereas
the synchronous protocol requires a polynomial number of
rounds [1]. On the other hand, there are simple networks,
where synchrony allows for faster rumor spreading than asyn-
chrony [1]: In an n-vertex star, it takes at most 2 rounds of
the synchronous push-pull protocol to spread the rumor to
all nodes (it takes at most one round for the centre node to
get informed by push, and another round for all remaining
nodes to pull the rumor from the center); whereas in the
asynchronous model it takes with high probability Θ(logn)
time until sufficiently many different Poisson clocks have
ticked for all nodes to get informed. Finally, for various
classical graph topologies such as the hypercube, random
graphs, and random regular graphs, both protocols have the
same rumor spreading times within constant factors [2, 14,
21,23].

These results raise the question how big the gap between
the asynchronous and the synchronous rumor spreading times
can be. In the following discussion we restrict ourselves to
push-pull communication for graphs with n vertices, unless
mentioned otherwise. Acan, Collevecchio, Mehrabian, and
Wormald [1] showed that for any graph the high-probability
rumor spreading time in the asynchronous model is at most
a multiplicative O(logn) factor larger than that of the syn-
chronous model. While this result is tight for the n-vertex
star, it may not be tight for graphs that have super-constant
synchronous rumor spreading time. In fact, Acan et al.
conjectured that the high-probability asynchronous rumor
spreading time can be at most by an additive O(logn) term
larger than the synchronous one. Our first main result proves
that this conjecture is true up to a constant factor.

Theorem 1. Let G be a connected graph with n vertices,
u be a vertex of G, and T1/n be the number of synchronous
push-pull rounds before the rumor spreads from u to all other
nodes with high probability (i.e., with probability 1 − 1/n).
Then the time in the asynchronous push-pull protocol be-
fore the rumor spreads from u to all other nodes is at most
O(T1/n + logn) with high probability.

This bound is asymptotically tight, and in particular it shows
that for most graphs, namely those that have at least log-
arithmic high-probability rumor spreading time, the asyn-
chronous rumor spreading time is not asymptotically larger
than the synchronous one. Further, it implies that sev-
eral known upper bounds that have been shown to hold for

the synchronous push-pull protocol carry over to the asyn-
chronous, such as known bounds with graph expansion pa-
rameters [17,18].

Acan et al. [1] showed also that the high-probability ru-
mor spreading time in the synchronous model can be at
most by a factor of O(n2/3) larger than in the asynchronous
model. They conjecture that this factor can be improved to
n1/2 · (logn)O(1). Our second main result is a proof of this
conjecture.

Theorem 2. Let G be a connected graph with n vertices,
u be a vertex of G, and T be the number of synchronous
push-pull rounds before the rumor spreads from u to all other
nodes. Then the time in the asynchronous push-pull proto-
col before the rumor spreads from u to all other nodes has
expectation Ω(E[T ]/

√
n).

Using this theorem, the conjecture of Acan et al. follows
from the fact that with high probability the synchronous ru-
mor spreading time T is at most by a multiplicative O(logn)
factor larger than its expectation; i.e., T = O(E[T ] · logn)
with high probability. We currently do not know if the
above bound is tight. Acan et al. [1] described a graph in
which the asynchronous push-pull protocol has logarithmic
running time, whereas synchronous push-pull has a running
time of Θ(n1/3). This implies that the lower bound of The-
orem 2 may be smaller than the best possible bound by at
most a factor of Θ(n1/6).

In the synchronous model, the push-pull protocol can be
significantly faster than the push(-only) protocol (but clearly
it cannot be slower). For example, for an n-vertex star it
takes with high probability Θ(n logn) synchronous rounds
to inform all nodes using the push protocol, while it takes at
most two rounds using the push-pull protocol, as discussed
earlier. Theorem 1 has the interesting consequence that
push-pull communication can only have performance bene-
fits over push on non-regular graphs. This is immediate from
the following observations: (1) For the push protocol, Sauer-
wald [24] showed that for any graph, the high-probability
synchronous rumor spreading time is bounded by the asyn-
chronous rumor spreading time within a constant multiplica-
tive factor. (2) It is not hard to see that on regular graphs,
the asynchronous rumor spreading time of the push protocol
has the same distribution as twice the asynchronous rumor
spreading time of the push-pull protocol (see the full version
of the paper for details). Last, (3) Theorem 1 implies that on
regular graphs, the high-probability asynchronous push-pull
rumor spreading time is bounded by the synchronous push-
pull rumor spreading time within a constant multiplicative
factor.1 To summarize, we obtain the following, informally
stated relations for the asymptotic high-probability rumor
spreading times on any regular graph:2

synchronous push
(1)

≤ asynchronous push

(2)

≤ asynchronous push-pull
(3)

≤ synchronous push-pull.

Corollary 3. Let G be a connected regular graph with
n vertices, u be a vertex of G, and Tp,1/n, Tpp,1/n be the
1The logarithmic additive term in the bound of Theorem 1
can be omitted as the synchronous push-pull rumor spread-
ing time is with high probability at least Ω(logn) on any
regular graph.
2Here, ‘≤’ reads as ‘has with high probability smaller or
equal rumor spreading time, modulo constant factors.’



number of synchronous push, respectively, push-pull rounds
before the rumor spreads from u to all other nodes with high
probability. Then Tp,1/n = Θ(Tpp,1/n).

2. DEFINITIONS
Let G = (V,E) be a connected undirected graph with
|V | = n nodes. For each node u ∈ V , degG(u) denotes the
degree of u, and ΓG(u) is the set of neighbors of u in G; we
will omit subscript G when there is no ambiguity.

Rumor Spreading Algorithms
We consider two randomized rumor spreading algorithms
on graph G. The first is the standard synchronous push-pull
algorithm, or simply push-pull, which proceeds in synchro-
nized rounds; we will write pp to denote this algorithm. Ini-
tially, in round 0, a source node u ∈ V generates a rumor.
In each subsequent round r = 1, 2, . . . , every node v ∈ V
initiates a communication channel with a uniformly random
neighbor w ∈ Γ(v) (we say v contacts w), and if before the
round exactly one of v, w knows the rumor (is informed),
then the other node gets informed in round r as well. In
particular, if node v is informed before the round and w is
not, we say that v pushes the rumor to w in round r, while
if v is not informed and w is, we say that v pulls the rumor
from w. Note that each node contacts exactly one other
node, but may be contacted by several nodes in the same
round. In this case, we assume that the communications
take place in parallel and independently. In the analysis, we
will represent the pairwise communications that take place
in a round by a set {(v, wv)}v∈V of n pairs, denoting that
each node v contacts node wv in the round.

The second algorithm we consider is the asynchronous
push-pull algorithm, denoted pp-a. In this algorithm, each
node v ∈ V has its own independent Poisson clock with rate
λ = 1, and each time v’s clock ticks, v contacts a uniformly
random neighbor w ∈ Γ(v). As before, if only one of v, w
knows the rumor before the communication takes place, then
the other node gets informed as well. We refer to this com-
munication as a step of the algorithm, and say that node v
takes or executes this step. We will represent a step by a
pair (v, w), denoting that node v contacts w in the step.

We will consider a couple of alternative, but equivalent
views of asynchronous push-pull. Rather than assuming a
Poisson clock with rate 1 on each node, we can assume that
we have an independent Poisson clock for each (ordered)
pair of adjacent nodes (v, w) with rate 1/ deg(v), and each
time this clock ticks, v contacts w. A second alternative
is to assume that we have a single Poisson clock with rate
n, and each time this clock ticks, a uniformly random node
is chosen to take a step, i.e., contact a random neighbor.
The equivalence of these descriptions is immediate from the
properties of the superposition of independent Poisson pro-
cesses and the memoryless property of exponential random
variables.

Rumor Spreading Time
Next we define the time complexity measures we will use.
For a rumor spreading algorithm α, we define the rumor
spreading time of α on G = (V,E) for source u ∈ V , denoted
T (α,G, u), to be the “time” before a rumor originated at
node u spreads to all nodes in G using algorithm α. The
notion of time is different for synchronous and asynchronous
algorithms. For the former, time is measured in terms of

rounds, while for asynchronous algorithms time is measured
in terms of time units.3 For 0 < q < 1, we define

Tq(α,G, u) = min{t : Pr[T (α,G, u) ≤ t] ≥ 1− q)},

i.e., the time before all nodes are informed with probability
1 − q. We will be particularly interested in T1/n(α,G, u),
the high-probability rumor spreading time of α.

Other Notation
We write X ∼ Y to denote that random variables X and Y
have the same distribution, and X 4 Y to denote that Y
stochastically dominates X.

Unif(A) denotes the uniform distribution over the set A;
Geom(p) is the geometric distribution with success proba-
bility p; Exp(λ) is the exponential distribution with rate λ;
NegBin(k, p) is the negative-binomial distribution, i.e., the
distribution of the sum of k i.i.d. geometric random vari-
ables with probability parameter p; and Erl(k, λ) is the Er-
lang distribution, i.e., the distribution of the sum of k i.i.d.
exponential random variables with rate λ.

For any function f(x), we define the set argminx f(x) =
{x : ∀ y, f(x) ≤ f(y)}. In case this set is a singleton set {a},
we will write argminx f(x) = a.

3. ANALYSIS OVERVIEW
Below we highlight the main ideas and techniques used in

the analysis of our main results: the upper bound of Theo-
rem 1, and the lower bound of Theorem 2.

Upper Bound
Our proof of Theorem 1 relies on a new coupling argument.
This argument can be viewed as an extension of a basic
coupling technique first used in [24] to relate the rumor
spreading time of the asynchronous push algorithm (denoted
push-a) with that of synchronous push. The following sim-
ple coupling was proposed there: Once it gets informed, each
node v contacts its neighbors in the exact same order in both
algorithms push and push-a. I.e., if rv is the round when v
gets informed in push, tv is the time when v gets informed
in push-a, and tv,i is the i-th time that v’s clock ticks af-
ter time tv, then v pushes the rumor to the same node in
round rv + i of push, and at time tv,i in push-a. Consider
a path v0 = u, v1, . . . , vl = v through which v receives the
rumor in push, where u is the initially informed node and
node vi+1 learns the rumor from vi, for 0 ≤ i < l; let also
di = rvi+1 − rvi . The time before v gets informed is then
rv =

∑
i di. Consider now the same path in push-a and

let τi = tvi+1 − tvi ; then tv =
∑
i τi. The coupling implies

that in push-a, vi+1 learns the rumor no later than in time
tvi,di , when vi pushes the rumor to it (but it may learn the
rumor sooner, from another neighbor). And since for any
j we have in expectation that tv,j − tv = j, it follows that
E[τi | di] ≤ di, and thus E[tv] ≤ E[rv]. This expectation
bound can be turned into a high-probability bound, but we
do not discuss the details here.

The above simple technique does not work for push-pull as
there is no obvious way to couple pull operations. In fact, as

3An alterative measure for the asynchronous rumor spread-
ing time would be the total number of steps before all nodes
get informed. The ratio of this number of steps over n is
equal in expectation to the number of time units before all
nodes get informed.



far as we know, there is no coupling technique in the rumor
spreading literature that achieves such a coupling between
pull operations. Our analysis does exactly that: it provides
a method to couple pull operations to achieve the same effect
as the above natural coupling between push operations.

The coupling we propose and, especially, its analysis are
somewhat involved, so we give the high-level ideas first.
For each node v and each neighbor w of v we consider
an independent exponential random variable Yv,w with rate
λv = 1/ deg(v). In pp-a, we set to be equal to Yv,w the time
between the point tw when w gets informed, and the point
when v contacts w for the first time after tw in order to
pull the rumor, provided that v is still not informed by that
time. For pp, we would like to set equal to Yv,w (precisely, to
dYv,we) the number of rounds after rw, when v pulls the ru-
mor from w, provided v is still not informed by that round.
Doing so, however, results in a number of issues

(1) The probability for v to pull the rumor from any spe-

cific informed neighbor in a round of pp is 1 − e−1/ deg(v)

under this coupling, which is slightly smaller than 1/deg(v).
For this reason we set λv = 2/deg(v) (while we use 2Yv,w ∼
Exp(1/ deg(v)) rather than Yv,w in pp-a).

(2) Node v may have to contact more than one informed
node in a round. However, this is not a real issue as it
suffices to pull from just one of them to get informed.

(3) The overall probability that v succeeds in pulling the
rumor in a given round is not exactly the right one: if fewer
than some constant fraction of v’s neighbors are informed
then the probability is larger that it should be, otherwise it
is smaller. Consider for example the two extreme cases: if
v has only one informed neighbor the probability of pulling
from it is 1 − e−2/ deg(v) ≈ 2/ deg(v) instead of 1/deg(v);
while if all of v’s neighbors are informed, the probability
of pulling from (at least) one of them is 1 − e−2, which is
smaller than the correct value of 1. The former is not an
actual problem, as it just speeds up pp which only makes
our result stronger. The latter however is a problem. To
solve it, we impose that as soon as v has at least deg(v)/2
informed neighbors (and is still not informed), it pulls the
rumor in the next round r∗ with probability 1.

This last modification requires some subtle handing in or-
der to work: Among all its (at least deg(v)/2) informed
neighbors, we let v pull the rumor from the neighbor w∗

that minimizes the quantity tw + Yv,w. We show that this
implies that the value of rw∗+Yv,w∗ is not much larger than
r∗, in particular, rw∗ + Yv,w∗ = r∗ + O(1) in expectation.
Hence, this case is not very different from the setting with-
out the last modification, i.e., the setting in which v pulls
the rumor from w in a round r such that rw + dYv,we = r.
The intuition why we have rw∗+Yv,w∗−r∗ = O(1) in expec-
tation is simple: for each of the at least deg(v)/2 informed
neighbors w of v, the difference rw+Yv,w−r∗ is an indepen-
dent exponential random variable with rate 2/ deg(v), and
rw∗ +Yv,w∗ − r∗ is the minimum of them. This implies that
rw∗ + Yv,w∗ − r∗ is exponentially distributed with a rate of
at least 1, thus its expectation is at most 1.

The detailed analysis is given in Section 4

Lower Bound
Our proof of Theorem 2 can be viewed as a refinement of
the analysis technique used in [1] to prove a lower bound

of Ω(n−2/3) on the ratio of asynchronous over synchronous

push-pull rumor spreading times. However, our analysis in-
troduces several new ideas, in order to improve the lower
bound to Ω(n−1/2).

We use a coupling argument which, roughly speaking, al-
lows us to divide the sequence of steps in pp-a into blocks,
and map each block to one or more consecutive rounds of pp,
so that the set of informed nodes in pp-a after each block
of steps is a subset of the set of informed nodes in pp af-
ter the last round corresponding to that block. The rounds
mapped to a block contain all pairwise communications of
the steps in the block. On average a block contains Θ(

√
n)

steps and is mapped to O(1) rounds of pp (even though some
blocks may be much smaller and mapped to a larger num-
ber of rounds as discussed below). Since the expected time
between consecutive steps is 1/n, the desired bound follows.

We have two types of blocks: normal and special blocks.
A normal block consists of at most

√
n steps and is mapped

to a single round of pp, while a special block consists of a
single step and may be mapped to more than one round. Let
S1 = (x1, y1), S2 = (x2, y2), . . . be the sequence of steps in
pp-a, where Si = (xi, yi) denotes that node xi contacts node
yi in step i. The first of the blocks into which the sequence
of Si is partitioned is a normal block (starting from S1).
A normal block B starting from Si consists of the steps
Si, . . . , Sj−1, where j > i is the smallest index for which
some of the following three conditions hold:

(1) j − i =
√
n, i.e., B contains the maximum allowed

number,
√
n, of steps.

(2) xj = xk or xj = yk for some k ∈ {i, . . . , j − 1}, i.e., in
some of the steps i up to j − 1, node xj either contacted or
was contacted by a node. We say that Sj is left-incompatible
with (Si, . . . , Sj−1).

(3) Node yj got informed in one of the steps i up to j− 1.
We say that Sj is right-incompatible with (Si, . . . , Sj−1).

Conditions (2) and (3) above ensure that all steps of a
normal block can be mapped to a single round of pp. In
particular, (2) implies that no node contacts more than one
neighbor in a single block, while (2) and (3) together prevent
the following undesirable scenario: a node v gets informed
by some neighbor (via push or pull), and then during the
same block a non-informed neighbor of v pulls the rumor
from v. Clearly, this scenario cannot take place in just one
round of pp. The single round of pp that corresponds to a
normal block contains all the pairwise communications of
the steps in that block.

If a normal block B = (Si, . . . , Sj−1) ends because con-
dition (1) or (2) is met, then the next block is also nor-
mal. If this is not the case, and thus Sj = (xj , yj) is right-
incompatible with B, then the next block is a special block.
The reason why we have to treat this case differently is the
following. We want to ensure that in each round of pp, the
neighbor that each node contacts is chosen independently of
all other choices (in the same or previous rounds). If r is the
round that corresponds to block B, treating the next block
as normal despite knowing that Sj is right-incompatible with
B would imply that (with probability 1) some of the nodes
that got informed in round r will be contacted by at least one
node in round r+ 1. And this could introduce dependencies
between nodes’ random choices in round r+ 1 and the past.
Note that knowing instead that Sj is left-incompatible with
B does not cause the same problems, because each round



contains one communication pair (v, v′) for every node v
(and thus for node xj).

We handle a special block as follows: We run a number of
rounds in pp (independent of the sequence of steps so far)
until we have a round that contains at least one communi-
cation pair (a, b) that is right-incompatible with the normal
block B which is before the special block; these rounds will
be the rounds of pp that correspond to the special block.
Moreover we “discard” the right-incompatible pair Sj , and
replace it by pair (a, b) in pp-a. If more than one such pair
(a, b) exists in the round, then we choose one of them at
random, from some appropriate distribution.

Establishing that the above coupling is a proper coupling
is a bit technical. But once we have done so, proving the
desired lower bound is not difficult. The proof goes roughly
as follows. We argue that t steps of pp-a are mapped to at
most O(t/

√
n +
√
n) rounds of pp in expectation: At most

t/
√
n rounds correspond to blocks of size exactly

√
n. Fur-

ther, at most t/
√
n rounds in expectation corresponding to

blocks that end because a left-incompatible pair is encoun-
tered; the reason is that such a pair is encountered with
probability O(1/

√
n) in a step, given that the block size is

at most
√
n. It remains to bound the number of rounds cor-

responding to special blocks. By (3), a node v can result in
a special block only if the following scenario occurs: v gets
informed during a step in some block B, and after that, v
is contacted by some neighbor before

√
n additional steps

are taken (otherwise B finishes due to (1)). Let π(v) denote
the probability that v is contacted in a random step (this
probability depends on the degrees of v’s neighbors). The
probability that v causes a special block is then bounded
by
√
n · π(v). Moreover, if that special block exists, the

expected number of rounds mapped to the block is upper
bounded by the expected number of rounds until v is con-
tacted by some neighbor. The probability that v is contacted
by at least one neighbor in a round can be easily shown to
be qv ≥ 1−e−nπ(v). So, the expected number of rounds cor-
responding to the special block is at most 1/qv. It follows
that the expected total number of special blocks is at most∑
v

√
n·π(v)

1−e−nπ(v) , which is easily shown to be O(
√
n).

Applying the above result, that t steps of pp-a are mapped
to at most O(t/

√
n+
√
n) rounds of pp in expectation, to the

total number of steps before all nodes get informed in pp-a
(thus t ≥ n− 1), and using that the expected time between
two consecutive steps is 1/n, gives that the expected total
number of rounds in pp is by at most a factor of O(

√
n)

larger than the expected time in pp-a.
The detailed analysis can be found in Section 5.

4. UPPER BOUND ANALYSIS
We prove that on any graph, the high-probability rumor

spreading time of asynchronous push-pull is bounded by the
high-probability rumor spreading time of synchronous push-
pull plus a logarithmic term.

Theorem 4. For any connected n-node graph G = (V,E),
and any vertex u ∈ V of G, we have T1/n(pp-a,G, u) =
O(T1/n(pp,G, u) + logn).

The proof is based on a coupling argument. For the sake
of comprehension, we define two auxiliary rumor spreading
processes, ppx and ppy, and present the coupling in three
steps: first we couple pp with ppx, then ppx with ppy, and
finally ppy with pp-a.

Processes ppx and ppy are very similar to pp, except that
they use different rules to decide from which neighbor a non-
informed node tries to pulls the rumor in a round. We point
out that ppx and ppy are not realistic rumor spreading algo-
rithms, as they assume that at any time, a node knows the
set of its informed neighbors; we introduce these processes
just to facilitate our analysis. We describe process ppx first.

Definition 5 (Process ppx). Process ppx is the fol-
lowing synchronous rumor spreading algorithm: For each
round r and v ∈ V , (1) if v is informed before round r,
then in round r, v pushes the rumor to a random neighbor;
(2) if v is not informed before round r and has k informed
neighbors at that time, then with probability

p =

{
1− e−2k/ deg(v), if k < deg(v)/2;
1, if k ≥ deg(v)/2,

v pulls the rumor from a random informed neighbor in round
r, while with the remaining probability, 1−p, v does not pull
the rumor in this round.

The rumor spreading time for ppx is dominated by that
for pp. The proof (which can be found in the full version of
the paper) relies on the observation that, for the same set of
informed nodes, a non-informed node is more likely to pull
the rumor in ppx than in pp in the next round.

Lemma 6. T (ppx,G, u) 4 T (pp,G, u).

The second auxiliary process we introduce, ppy, is identi-
cal to ppx except for the probability with which a node pulls
the rumor in a round.

Definition 7 (Process ppy). Process ppy is the fol-
lowing synchronous rumor spreading algorithm: For each
round r and v ∈ V , (1) if v is informed before round r,
then in round r, v pushes the rumor to a random neighbor;
(2) if v is not informed before round r and has k informed
neighbors at that time, then with probability

p = 1− e−2k/ deg(v),

v pulls the rumor from a random informed neighbor in round
r, while with the remaining probability, 1−p, v does not pull
the rumor in this round.

In Lemma 9 below, we bound the rumor spreading time for
ppy in terms of the rumor spreading time for ppx. First we
provide a technical lemma that we will need. This lemma
computes the conditional distribution of the minimum of
a collection of independent exponential random variables,
given some limited information about them. (The proof can
be found in the full version of the paper)

Lemma 8. Let Z1, . . . , Zk be i.i.d. random variables with
Zi ∼ Exp(λ), and let J = argmini Zi. For α1, . . . , αk arbi-
trary non-negative integers, let Z = mini{Zi−αi}, and let A
be the event: ∀ i, Zi > αi. Then (Z | J = j,A) ∼ Exp(kλ),
i.e., for any t ≥ 0, Pr[Z ≤ t | J = j,A] = 1− e−kλt.

We remark that from the memoryless property of expo-
nential distribution it is immediate that (Z | A) ∼ Exp(kλ).
The lemma above says that conditioning also on J does not
add any information. We now proceed to the main lemma.

Lemma 9. Tδ(ppy,G, u) = O
(
Tδ(ppx,G, u) + log(n/δ)

)
,

for any 0 < δ ≤ 1/2.



Proof. We define a coupling of the random choices in
ppx and ppy. In this coupling, let rv and r′v denote the
rounds in which node v gets informed in ppx and ppy, re-
spectively (for the source u, ru = r′u = 0). We will show that
for any v ∈ V , with probability at least 1 − δ/2n we have
r′v ≤ 2rv +O

(
log(n/δ)

)
. A union bound then completes the

proof.
To facilitate the coupling we define the following collection

of random variables. For each v ∈ V , i ≥ 1, and w ∈
Γ(v), let Xv,i and Yv,w be random variables with Xv,i ∼
Unif(Γ(v)) and Yv,w ∼ Exp(λv), with λv = 2/deg(v) (i.e.,
Xv,i is a random neighbor of v, and Yv,w is an exponential
random variable with rate λv). We assume that all these
random variables are mutually independent.

For push operations, the coupling states that each node
pushes the rumor to the same neighbor in both processes, in
the i-th round after the node gets informed. Precisely, for
each v ∈ V and i ≥ 1, v pushes the rumor to node Xv,i in
round rv + i of ppx, and in round r′v + i of ppy.

For pull operations, the coupling is more involved. For
ppy, for each pair of adjacent nodes v, w, if w gets informed
before v (i.e., r′w < r′v), and v is still not informed before
round r′w + dYv,we, then we let v pull the rumor from w
in round r′w + dYv,we. The formal definition takes also into
account the possibility that r′w+dYv,we = r′x+dYv,xe for two
distinct neighbors w, x of u, in which case the tie is broken
based on the actual values of Yv,w and Yv,x (rather than
their rounded up values). Precisely, for any v ∈ V \ {u}, if
v does not get informed by a push operation before round
t = minw∈Γ(v){r′w + dYv,we}, then in round t, v pulls the
rumor from node argminw∈Γ(v){r′w+Yv,w}, i.e., the neighbor

w that minimizes r′w + Yv,w.4 Clearly, for this neighbor w,
r′w + dYv,we = t.

For ppx, we use a similar coupling rule except that we need
to enforce that, as soon as half of v’s neighbors get informed,
v will pull the rumor in the next round with probability 1,
if it is not already informed. The neighbor w from which
v pulls the rumor in this case is the (currently informed)
neighbor that minimizes rw + Yv,w. Precisely, for any v ∈
V \ {u}, if t = minw∈Γ(v){rw + dYv,we} and z is the first
round by the end of which at least deg(v)/2 of v’s neighbors
have been informed, we distinguish the following two cases:

(i) If t ≤ z and v does not get informed by a push opera-
tion before round t, then in round t, v pulls the rumor
from node argminw∈Γ(v){rw + Yv,w}. So, in this case
the rule is the same as for ppy.

(ii) If t > z and v does not get informed by a push oper-
ation before round z + 1, then in round z + 1, v pulls
the rumor from node argminw∈Γ(v) : rw≤z{rw + Yv,w}.

It is not hard to verify that the above coupling is valid, in
the sense that the marginal distributions of the two processes
are the correct ones: For push operations there is nothing
to argue about, so we focus on pull operations. In ppy, if
before round r node v is still not informed, and its set of
informed neighbors is S with |S| = k, then the probability
that v pulls the rumor in round r is the same as the condi-
tional probability that minw∈S{r′w + Yv,w} ≤ r, given that
minw∈S{r′w + Yv,w} > r − 1. Since Yv,w ∼ Exp(λv), from
the memoryless property of the exponential distribution and

4Since r′w +Yv,w is a continuous random variable, the prob-
ability this quantity is the same for two distinct w is 0.

the independence between random variables Yv,w, it follows
that the above conditional probability is

1−
(
1− Pr[r′w + Yv,w > r | r′w + Yv,w > r − 1]

)k
= 1− e−kλv = 1− e−2k/ deg(v),

which is the right probability according to Definition 7. More-
over, if v does pull the rumor in round r, then it is equally
likely to pull it from any of its informed neighbors in S, as
the conditional random variables (r′w + Yv,w | r′w + Yv,w >
r − 1), for w ∈ S, have the same distribution and are inde-
pendent. A very similar argument shows that our coupling
yields the correct distribution for the pull operations in ppx,
as well.

Next we show that with probability at least 1 − δ/2n,
r′v ≤ 2rv +O

(
log(n/δ)

)
.

Let πv be a path through which the rumor reaches node
v ∈ V \{u} in ppx. Formally, πv = v0v1 . . . vl, where v0 = u,
vl = v, and for each 0 ≤ i < l, vi is a node from which vi+1

receives the rumor for the first time (i.e., in round rvi+1).
We express rv and r′v as

rv =
∑

0≤i<l

(rvi+1 − rvi), r′v =
∑

0≤i<l

(r′vi+1
− r′vi).

(Note that these equations hold for any collection of vi, not
just for the specific definition of πv.) For 0 ≤ i < l, let
di = rvi+1 − rvi and d′i = r′vi+1

− r′vi . We will show that

the difference d′i − di is dominated by a geometric random
variable with constant expectation. We distinguish three
cases, depending on how vi+1 gets the rumor from vi in ppx.

Case 1: vi pushes the rumor to vi+1, in round rvi+1 of
ppx. In this case, we have rvi+1 = rvi + min{j : Xvi,j =
vi+1}, and thus di = min{j : Xvi,j = vi+1}. Similarly, in
ppy, vi pushes the rumor to vi+1 in round r′vi+min{j : Xvi,j =
vi+1}. Thus vi+1 gets informed in ppy no later than in this
round, i.e., r′vi+1

≤ r′vi + min{j : Xvi,j = vi+1}, and so,

d′i ≤ min{j : Xvi,j = vi+1} = di.

Case 2: vi+1 pulls the rumor from vi, in round rvi+1 of
ppx, and before that round fewer than half of vi+1’s neigh-
bors are informed. In this case, rvi+1 = rvi + dYvi+1,vie,
thus di = dYvi+1,vie. Similarly, in ppy, vi+1 gets informed
no later than in round r′vi + dYvi+1,vie, because if vi+1 is
still not informed before that round, it will pull the rumor
in round r′vi + dYvi+1,vie (from vi or some other informed
neighbor). It follows that d′i ≤ dYvi+1,vie = di.

Case 3: vi+1 pulls the rumor from vi, in round rvi+1 of
ppx, and before that round at least half of vi+1’s neighbors
are informed. This case is more involved. As in case 2,
we have d′i ≤ dYvi+1,vie, but now it is possible that di <
dYvi+1,vie. We will use Lemma 8 to bound d′i − di.

Let z be the first round in ppx after which at least half
of the neighbors of vi+1 are informed, and let S be the set
of those informed neighbors (so |S| ≥ deg(vi+1)/2). Then
rvi+1 = z + 1. Also, from the coupling (case (ii)), vi =
argminw∈S{rw+Yvi+1,w}, thus rvi +Yvi+1,vi < rw+Yvi+1,w

for all w ∈ S \ {vi}. Notice that it is possible to have rvi +
Yvi+1,vi > z + 1, which implies di < Yvi+1,vi .

Let us fix the pairwise communications that occur in all
rounds of ppx, and for each w ∈ S, let Zw = rw + Yvi+1,w −
z. The set {Zw}w∈S is then a collection of i.i.d. random
variables with distribution Exp(λvi+1), and we know that
argminw∈S{Zw} = vi.



Consider now process ppy. To simplify exposition we shift
all round numbers in ppy by an appropriate offset, so that
the round number in which vi gets informed in ppy is the
same as the one in ppx. E.g., if v gets informed after k
rounds in ppx and after ` rounds in ppy, we add an offset
of (k − `) to all round numbers in ppy. So, the i-th round
in ppx has number i + (k − `), and the round when v gets
informed is r′vi = k = rvi .

If r′vi+1
≤ z, then d′i = r′vi+1

− r′vi = r′vi+1
− rvi ≤ z− rvi ,

and since di = (z + 1) − rvi , we have d′i < di. In the
following we assume that r′vi+1

> z, and bound the quantity

d′i − di + 1 = r′vi+1
− z using Lemma 8.

Let us fix all random communications in the first z rounds
of ppy, in a way that respects our coupling (recall we have
already fixed the communications in all rounds of ppx). Re-
vealing these random choices in ppy discloses additional in-
formation about variables Yvi+1,w, and thus also about the
variables Zw = rw + Yvi+1,w − z. Precisely, the additional
information is that for each w ∈ S, r′w + Yvi+1,w − z > 0,
which follows from the assumption r′vi+1

> z. Therefore,

Zw > rw−r′w, and since it is also Zw > 0 (from ppx), we have
that for any w ∈ S, Zw > αw, where αw = max{0, rw−r′w}.

To summarize, we have that random variables Zw, w ∈ S,
are independent with distribution Exp(λvi+1), and we know
that argminw∈S{Zw} = vi and Zw > αw = max{0, rw−r′w}.
Letting Z = minw∈S{Zw − αw}, we can apply Lemma 8 to
obtain for t ≥ 0,

Pr[Z ≤ t] = 1− e−|S|λvi+1
t ≥ 1− e−t,

because |S| ≥ deg(vi+1)/2 and λvi+1 = 2/deg(vi+1).
We can now argue that r′vi+1

−z ≤ dZe, and use the result

above to bound the distribution of r′vi+1
− z.

Z = min
w∈S
{Zw − αw}

= min
w∈S
{(rw + Yvi+1,w − z)−max{0, rw − r′w}}

= min
w∈S
{min{rw + Yvi+1,w, r

′
w + Yvi+1,w}} − z

= min{rvi + Yvi+1,vi , min
w∈S
{r′w + Yvi+1,w}} − z

= min
w∈S
{r′w + Yvi+1,w} − z,

where the last equation holds because rvi = r′vi . Since
minw∈S{r′w + dYvi+1,we} ≥ minw∈Γ(vi+1){r′w + dYvi+1,we} =

r′vi+1
, the equation above yields dZe ≥ r′vi+1

− z. From this

and the bound Pr[Z ≤ t] ≥ 1− e−t shown earlier, it follows
that for any integer t, Pr[r′vi+1

− z ≤ t] ≥ 1− e−t.
Finally, substituting d′i = r′vi+1

− r′vi = r′vi+1
− rvi and

di = (z + 1)− rvi , yields that for any integer t ≥ 0,

Pr[d′i − di + 1 ≤ t] ≥ 1− e−t.

This completes the analysis of Case 3.

In each of the above cases, 1–3, we have showed that either
(1) d′i ≤ di, or (2) given all communications that take place
in every round of ppx, and in the first z = r′vi + di − 1
rounds of ppy, we have d′i − di + 1 ≤ t with probability at
least 1−e−t, for any integer t ≥ 0. Note that (1) implies (2).

Let us fix all random communications that take place in
ppx (and thus all di). From (2) it follows that

Pr[d′i − di + 1 ≤ t | d′1 . . . d′i−1] ≥ 1− e−t.

This says that random variable Zi = d′i − di + 1 is dom-
inated by Geom(1/e), independently of Z1 . . . Zi−1. Us-
ing that rv =

∑
0≤i<l di and r′v =

∑
0≤i<l d

′
i, we obtain

r′v − rv + l =
∑

0≤i<l(d
′
i − di + 1), and applying Lemma 15

(in the appendix) for the sum of the (dependent) random
variables Zi, 0 ≤ i < l, we obtain that r′v − rv + l 4
NegBin(l, 1 − 1/e). From this, it follows that with prob-
ability at least 1− δ/2n, r′v− rv + l ≤ 2l+O

(
log(n/δ)

)
, and

thus r′v ≤ 2rv +O
(

log(n/δ)
)
, as l ≤ rv.

Taking the union bound over all v, gives that with proba-
bility at least 1− δ/2, we have for all v simultaneously that
r′v ≤ 2rv+O

(
log(n/δ)

)
. And since by definition, with prob-

ability 1 − δ/2, for all v we have rv ≤ Tδ/2(ppx,G, u), an-
other union bound gives that with probability at least 1− δ,
we have for all v that r′v ≤ 2Tδ/2(ppx,G, u) +O

(
log(n/δ)

)
.

This means Tδ(ppy,G, u) ≤ 2Tδ/2(ppx,G, u)+O
(

log(n/δ)
)
.

Finally, observing that Tδ/2(ppx,G, u) ≤ 2Tδ(ppx,G, u) for
δ ≤ 1/2, concludes the proof of Lemma 9.

It remains to couple process ppy with the asynchronous
push-pull rumor spreading algorithm, pp-a.

Lemma 10. Tδ(pp-a,G, u) = O
(
Tδ(ppy,G, u)+log(n/δ)

)
,

for any 0 < δ ≤ 1/2.

Proof. The structure of the proof is similar to that for
Lemma 9. The coupling is similar as well, even though the
details and the justification are simpler in this case. Essen-
tially, the coupling captures the intuition that ppy is just a
discretized version of pp-a.

In this coupling, for each v ∈ V , let tv be the time in which
v gets informed in pp-a, and let rv be the round in which
v gets informed in ppy. We will show that for any v ∈ V ,
with probability at least 1− δ/2n, tv ≤ 4rv + O

(
log(n/δ)

)
.

A union bound then completes the proof.
We define the same random variables as for the coupling

in the proof of Lemma 9: For any v ∈ V , i ≥ 1, and w ∈
Γ(v), let Xv,i and Yv,w be random variables with Xv,i ∼
Unif(Γ(v)) and Yv,w ∼ Exp(λv), where λv = 2/deg(v); all
these random variables are mutually independent. For ppy,
we use the same coupling rules as in the proof of Lemma 9,
and for pp-a we use a continuous-time version of those rules.

Precisely, for push operations the coupling is as follows.
For each v ∈ V and i ≥ 1, v pushes the rumor to node Xv,i
in round rv + i of ppy, and similarly v pushes the rumor to
Xv,i at time tv,i in pp-a, where tv,i is the time at which v
takes its i-th step after time tv.

For pull operations, the coupling is as follows. In ppy, for
each v ∈ V \{u}, if v does not get informed by a push opera-
tion before round r = minw∈Γ(v){rw+dYv,we}, then in round
r, v pulls the rumor from node argminw∈Γ(v){rw+Yv,w}. In
pp-a, for each v ∈ V \ {u}, if v does not get informed by a
push operation before time t = minw∈Γ(v){tw+2Yv,w}, then
at time t, v pulls the rumor from node argminw∈Γ(v){tw +
2Yv,w} (the factor 2 is justified below).

The above coupling yields the correct marginal distribu-
tion for the two processes: For ppy the same argument ap-
plies as in the proof of Lemma 9, so we just argue about pp-a.
The distribution of the push operations is clearly the right
one, so we just need to argue about pull operations. For
that, it is convenient to consider the view of pp-a in which
for each (ordered) pair v, w of adjacent nodes, there is an
independent poisson clock Cv,w with rate 1/ deg(v), and for
each time t at which the clock ticks, if right before the tick



v is still not informed and w is informed, then v pulls the
rumor from w at time t. Our coupling sets the length Lw
of the interval between time tw and the next tick of clock
Cv,w to be Lw = 2Yv,w. Since Yv,w ∼ Exp(2/ deg(v)) it
follows that 2Yv,w ∼ Exp(1/deg(v)), and this is the correct
distribution for Lw.

Next we show that with probability at least 1 − δ/2n,
tv ≤ 4rv +O

(
log(n/δ)

)
.

Let πv be a path through which the rumor reaches node
v ∈ V \{u} in ppy. Formally, πv = v0v1 . . . vl, where v0 = u,
vl = v, and for each 0 ≤ i < l, vi is a node from which vi+1

receives the rumor for the first time (i.e., in round rvi+1).
In line with the proof of Lemma 9, we compare the random
variables di = rvi+1 − rvi and τi = tvi+1 − tvi . We have two
cases:

Case 1: vi+1 pulls the rumor from vi in round rvi+1

of ppy. In this case, rvi+1 = rvi + dYvi+1,vie, thus di =
dYvi+1,vie. Similarly, in pp-a, vi+1 gets informed no later
than in time tvi + 2Yvi+1,vi , because if vi+1 is still not in-
formed by that time, it will pull the rumor from vi. It follows
that τi = tvi+1 − tvi ≤ 2Yvi+1,vi ≤ 2di.

Case 2: vi pushes the rumor to vi+1 in round rvi+1 of
ppy. In this case, rvi+1 = rvi +x, where x = min{j : Xvi,j =
vi+1}, thus di = x. Similarly in pp-a, vi pushes the rumor to
vi+1 at time tvi,x (i.e., in its x-th step after it gets informed).
Thus, tvi+1 ≤ tvi,x, and τi ≤ tvi,x − tvi . Given the random
communications in every round of ppy, and the steps in pp-a
up to time tvi , we have (tvi,x − tvi) ∼ Erl(x, 1), 5 and thus
τi 4 Erl(x, 1).

To summarise, in each case above, either (1) τi ≤ 2di, or
(2) given the communications in every round of ppy, and
the steps in pp-a up to time tvi , we have τi 4 Erl(di, 1).
Hence in both cases it holds τi − 2di 4 Erl(di, 1), given all
communications in ppy, and the steps in pp-a up to time tvi .

Let us fix all communications in ppy (and thus all di).
Using the result above, and a similar reasoning as in the
proof of Lemma 9 to tackle dependencies between variables
τi − 2di for different i, we obtain that

∑
i(τi − 2di) is dom-

inated by the sum
∑
i Zi of independent random variables

Zi ∼ Erl(di, 1), for 0 ≤ i < l. It follows
∑
i(τi − 2di) 4

Erl
(∑

i di, 1
)
. Substituting

∑
i τi = tv and

∑
i di = rv we

obtain that tv − 2rv 4 Erl(rv, 1). Using that Erl(k, λ) 4
NegBin(k, 1 − e−λ), yields tv − 2rv 4 NegBin(rv, 1 − 1/e).
From this, it follows that tv ≤ 4rv + O

(
log(n/δ)

)
, with

probability at least 1 − δ/2n. Using now the union bound
as in the end of the proof of Lemma 9, we finish the proof
of Lemma 10.

Proof of Theorem 4. Combining Lemma 10, Lemma 9,
and Lemma 6, we obtain that for any 0 < δ ≤ 1/2,

Tδ(pp-a,G, u) = O
(
Tδ(ppy,G, u) + log(n/δ)

)
= O

(
Tδ(ppx,G, u) + log(n/δ)

)
= O

(
Tδ(pp,G, u) + log(n/δ)

)
.

Setting δ = 1/n, yields the statement of the theorem.

5. LOWER BOUND ANALYSIS
We prove that the expected rumor spreading time of asyn-

chronous push-pull is at least Ω(1/
√
n) times the expected

rumor spreading time of synchronous push-pull.
5Recall, Erl(k, λ) is the distribution of the sum of k inde-
pendent exponential random variables with rate λ.

Theorem 11. For any connected n-node graph G = (V,E),
and any vertex u ∈ V of G, we have E[T (pp-a,G, u)] =
Ω
(
(1/
√
n) · E[T (pp,G, u)]

)
.

The proof is based on a coupling between pp-a and pp.
Let H = ((ui, vi))1≤i≤k be a sequence of k pairs of adja-

cent nodes, and let I ⊆ V be a set of nodes. We say that
a pair (x, y) of adjacent nodes is left-incompatible with H,
if x ∈ {ui}1≤i≤k ∪ {vi}1≤i≤k. We say that (x, y) is right-
incompatible with H and I, if the next two conditions hold:

(1) The pair (x, y) is not left-incompatible with H.

(2) If k steps of pp-a are executed such that in the i-th step
node ui contacts node vi, and before the first of these steps
the set of informed nodes is I, then node y gets informed in
one of those steps (note, this implies y /∈ I).

We say that H is incompatible-free with I if no pair (ui, vi)
in H is left-incompatible with Hi−1 = ((uj , vj))1≤j<i, or
right-incompatible with Hi−1, I.

Remark 12. Suppose that H is incompatible-free with I,
and we execute the pairwise push-pull communications de-
scribed in H, assuming that at the beginning the set of in-
formed nodes is I. Then the final set of informed nodes is the
same whether these communications take place sequentially
(as in pp-a), or in parallel (as in a round of pp).

Let S denote a random variable that is a pair (x, y) with
x ∼ Unif(V ) and (y | x) ∼ Unif(Γ(x)), i.e., x is a random
node and y a random neighbor of x. Let R denote a ran-
dom variable that is an n-set of pairs {(v, zv)}v∈V , with one
pair per node, such that zv ∼ Unif(Γ(v)) and the random
variables zv, v ∈ V , are independent.

For the coupling of pp and pp-a we will use the following
notation. For t ≥ 1, let at denote the node that takes the t-
th step in pp-a, and let bt be the neighbor that at contacts in
that step. For r ≥ 1 and v ∈ V , let cr,v denote the neighbor
that node v contacts in round r of pp. The coupling must
ensure that (at, bt) ∼ S and {(v, cr,v)}v∈V ∼ R. We define
also the following random variables, which will facilitate the
coupling. For i, j ≥ 1, let Si = (xi, yi) ∼ S and Ri,j =
{(v, zi,j,v)}v∈V ∼ R. We assume that all variables Si, Ri,j
are mutually independent.

We partition the sequence (Si)i≥1 into blocks of consecu-
tive elements. Each block corresponds to a number of steps
of pp-a equal to the size of the block, and to one or more
rounds on pp. We distinguish between normal and special
blocks. The first block starts with element S1 and is normal.
A normal block B starting from Si consists of the elements
Si, . . . , Sj−1, where j > i is the smallest index for which at
least one of the following conditions holds:

(1) j − i =
√
n;

(2) Sj is left-incompatible with H = (Si, . . . , Sj−1);

(3) Sj is right-incompatible with H and the set I of nodes
that are informed before the i-th step in pp-a.

Note that normal block B is incompatible-free with I, and
contains at most

√
n elements. If |B| =

√
n, or the element

Sj after the last element of B is left-incompatible with B,
then the next block is a normal block as well. Otherwise,
Sj is right-incompatible with B, I, and the next block is a
special block; this special block contains just the single pair
Sj . The block right after a special block is always normal.

We describe now the steps in pp-a and the rounds in pp
that correspond to each block. Let (Bk)k≥1 be the sequence
of blocks in which (Si)i≥1 is partitioned, as described above.



Suppose that Bk = (Si, . . . , Sj−1) is a normal block. Then
we set (at, bt) = St, for all i ≤ t < j, i.e., the steps in pp-a
are described precisely by the sequence of pairs in the block.
In pp we have a single round r corresponding to Bk, and
for this round we set cr,xt = yt for all i ≤ t < j; for the
remaining nodes v ∈ V \{xi, . . . , xj−1}, we can assume that
they do not contact any node in the round, as this can only
increase the rumor spreading time of pp.

Suppose now that Bk = (Si) is a special block, thus Si
is right-incompatible with Bk−1 and the set I of informed
nodes in pp-a before the first step in block Bk−1. In this
case, the step (ai, bi) in pp-a that corresponds to Bk may be
different than Si, and we may have more than one rounds
in pp; the communications in those rounds are described by
the sets Ri,j , j ≥ 1. Let j∗ be the smallest j such that Ri,j
contains at least one element that is right-incompatible with
Bk−1, I. Then for block Bk we will have j∗ rounds in pp: if r
is the index of the round corresponding to the previous block
Bk−1, then for 1 ≤ j ≤ j∗, we set {(v, cr+j,v)}v∈V = Ri,j .
For pp-a we set (ai, bi) to be a pair from Ri,j∗ that is right-
incompatible withBk−1, I. If more than one such pair exists,
we choose one as follows. Let A be the set containing all
possible pairs of adjacent nodes that are right-incompatible
with Bk−1, I. We set (ai, bi) to be an element of the set
D = A∩Ri,j∗ selected at random according to a distribution
µA|D with the following property: Let

µA(a, b) =
∑
C⊆A

(
µA|C(a, b) · Pr[A ∩R = C | A ∩R 6= ∅]

)
;

then

∀ (a, b) ∈ A, µA(a, b) = Pr[S = (a, b) | S ∈ A]. (1)

I.e., µA|D is such that the pair (a, b) chosen has the same dis-
tribution as the pair S in a random step of pp-a, given that S
is right-incompatible with Bk−1, I (µA averages over all pos-
sible rounds containing at least one right-incompatible pair.)

In the full version of the paper, we show that the above
probability distributions µA|D exist, and establish that the
coupling is valid, i.e., the marginal distribution of each pro-
cess is the right one. In the full version, we also prove the
next simple lemma. For k ≥ 0, let Ik(pp-a) be the set of
informed nodes in pp-a after the steps corresponding to the
first k blocks, and let Ik(pp) be the set of informed nodes in
pp after the rounds corresponding to the first k blocks.

Lemma 13. For any k ≥ 0, Ik(pp-a) ⊆ Ik(pp).

Next we bound the expected number of rounds in pp that
correspond to the steps in pp-a before all nodes get informed.
Let It be the set of informed nodes in pp-a after the first t
steps, and let τ = min{t : It = V } be the number of steps
before all nodes get informed. Let ρt be the number of
rounds in pp that correspond to the first k blocks, where k
is the index of the block containing St.

Lemma 14. E[ρτ ] = O (E[τ ]/
√
n+
√
n).

Proof. Let B1, . . . , Bkt denote the blocks into which the
sequence S1, . . . , St is partitioned. We decompose ρt into
the following four terms:

The number ρt,full of rounds corresponding to (normal)
blocks Bk, k ≤ kt, with |Bk| =

√
n.

The number ρt,left of rounds corresponding to normal
blocks Bk = (Si, . . . , Sj−1), with k ≤ kt and |Bk| <

√
n,

such that Sj is left-incompatible with Bk.

The number ρt,right of rounds corresponding to normal
blocks Bk = (Si, . . . , Sj−1), with k ≤ kt and |Bk| <

√
n,

such that Sj is right-incompatible with Bk and the set I of
informed nodes in pp-a before step i.

The number ρt,special of rounds corresponding to special
blocks.

We have ρt = ρt,full + ρt,left + ρt,right + ρt,special. Since
ρt,full ≤ t√

n
, and ρt,right ≤ ρt,special + 1, we have that

ρt ≤ t√
n

+ ρt,left + 2ρt,special + 1. Letting t = τ and taking

the expectation of both sides yields

E[ρτ ] = O
(
E[τ ]/

√
n+ E[ρτ,left] + E[ρτ,special] + 1

)
.

We show E[ρτ,left] ≤ 2E[τ ]/
√
n and E[ρτ,special] ≤ 2

√
n.

Substituting these above yields the claim.
The bound on ρτ,left is based on the following observation.

For any t ≥ 1, and any way of fixing the first t− 1 steps of
pp-a, the probability that St = (xt, yt) is left-incompatible
with (Si, . . . , St−1), where Si is the first element in the block

containing St−1, is at most 2(t−i)
n
≤ 2√

n
. The reason is that

xt is chosen uniformly at random among all n nodes, and at
most 2(t− i) distinct nodes appear in the pairs Si, . . . , St−1,
while the number of those pairs is t− i ≤

√
n.

For t ≥ 0, define Zt = ρt,left − 2t√
n

. The sequence (Zt)t≥0

is a supermartingale with respect to (Xt)t≥1, where Xt =
(at, bt), because: (1) ρt,left (and thus Zt) is a function of
X1, . . . , Xt, as this sequence completely determines the col-
lection of normal blocks into which S1, . . . , St are divided;
and (2) for t ≥ 1, E[Zt − Zt−1 | X1 . . . Xt−1] = Pr[ρt,left −
ρt−1,left = 1 | X1 . . . Xt−1]− 2√

n
≤ 0, as we argued above.

We use the optional stopping theorem for this supermartin-
gale sequence and stopping time τ . Since for any t ≥ 1,
|Zt−Zt−1| ≤ 1, and E[τ ] is finite (bounded by n2 logn), the
optional stopping theorem yields E[Zτ ] ≤ E[Z0]. Substitut-

ing Zτ = ρτ,left − 2τ√
n

and Z0 = 0, yields E[ρτ,left] ≤ 2E[τ ]√
n

.

Next we bound ρτ,special. The O(
√
n) bound we will show

holds for any t, not just for t = τ . For each node v, we bound
the expected number of rounds that correspond to special
blocks (St) with yt = v, and then sum these expectations
over all v to obtain a bound on E[ρτ,special]. For each v, there
is at most one special block (St) with yt = v, as this block
must immediately follow the block in which v gets informed
in pp-a. To prove the bound we just use a weaker fact: If tv
denotes the step when v gets informed in pp-a, and (St) is
a special block with yt = v, then it must be t ≤ tv +

√
n, as

the maximum block size is
√
n.

Let us fix X1, . . . , Xt−1, for some tv < t ≤ tv +
√
n, and

let Si be the first element in the block containing Stv . The
probability that (St) is a special block with yt = v, is the
probability that v is contacted in the step by one of its neigh-
bors in Γt(v) = Γ(v)\{xi, . . . , xt−1}∪{yi, . . . , yt−1}, and this
probability is πt(v) = 1

n

∑
w∈Γt(v)

1
deg(w)

(we do not take

into account v’s neighbors that have already appeared in a
pair in (Si, . . . , St−1), as St should not be left-incompatible).
Given now that (St) is a special block with yt = v, the ex-
pected number of rounds that correspond to this block is at
most 1/qt(v), where qt(v) is the probability that v is con-
tacted by a neighbor from Γt(v) in a given round. We have

qt(v) = 1−
∏

w∈Γt(v)

(1− 1/deg(w))

≥ 1− e−
∑
w∈Γt(v)

1
deg(w) = 1− e−nπt(v).



Therefore, the expected number of rounds as a result of the
possibility that (St) is a special block with yt = v, is at most

πt(v)

qt(v)
≤ πt(v)

1− e−nπt(v)
=

1

n
· nπt(v)

1− e−nπt(v)

≤ 1

n
· (1 + nπt(v)) =

1

n
+ πt(v) ≤ 1

n
+ π(v),

where π(v) = 1
n

∑
w∈Γ(v)

1
deg(w)

, and the first inequality in

the last line is obtained using that e−x ≤ 1
1+x

, for x ≥ 0.

Summing over all tv < t ≤ tv+
√
n, and over all v, we obtain

E[ρτ,special] ≤
√
n
∑
v∈V

(
1
n

+ π(v)
)

=
√
n+
√
n
∑
v∈V

π(v)

= 2
√
n.

This completes the proof of Lemma 14.

From Lemmas 13 and 14, it follows that the expected
number of rounds before all nodes get informed in pp is
E[T (pp,G, u)] ≤ E[ρτ ] = O (E[τ ]/

√
n+
√
n). The expected

time in pp-a until all nodes get informed is E[T (pp-a,G, u)] =
E[τ ]/n, because the expected time between two consecutive
steps is 1/n, and the times between steps are independent
and also independent of τ . It follows that E[T (pp,G, u)] =
O (
√
n · E[T (pp-a,G, u)] +

√
n), which implies the bound of

Theorem 11.
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T. Sauerwald. Quasirandom rumor spreading: An

experimental analysis. ACM Journal of Experimental
Algorithmics, 16, 2011.
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APPENDIX
A. A DOMINATION LEMMA

Lemma 15. Let Z1, . . . , Zk be random variables such that
for each 1 ≤ i ≤ k and j ≥ 0, Pr[Zi ≤ j | Z1 . . . Zi−1] ≥
1− qj, for some 0 < q < 1. Then

∑
i Zi 4 NegBin(k, 1− q).

Proof. A standard coupling argument shows that
∑
i Zi

is dominated by the sum of k independent random variables
Z′1, . . . , Z

′
k with Z′i ∼ Geom(1 − q). The claim then follows

because
∑
i Z
′
i ∼ NegBin(k, 1− q).
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