640 research outputs found

    Herbert Herbert: His corneal pits and scleral slits

    Get PDF

    A comparison of biomarker records of northeast African vegetation from lacustrine and marine sediments (ca. 3.40 Ma)

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Organic Geochemistry 38 (2007): 1607-1624, doi:10.1016/j.orggeochem.2007.06.008.Integrated terrestrial and marine records of northeast African vegetation are needed to provide long, high resolution records of environmental variability with established links to specific terrestrial environments. In this study, we compare records of terrestrial vegetation preserved in marine sediments in the Gulf of Aden (DSDP Site 231) and an outcrop of lacustrine sediments in the Turkana Basin, Kenya, part of the East African Rift System. We analyzed higher plant biomarkers in sediments from both deposits of known equivalent age, corresponding to a ca. 50 – 100 ka humid interval prior to the ÎČ-Tulu Bor eruption ca. 3.40 Ma, when the Lokochot Lake occupied part of the Turkana Basin. Molecular abundance distributions indicate that long chain n-alkanoic acids in marine sediments are the most reliable proxy for terrestrial vegetation (Carbon Preference Index, CPI, = 4.5), with more cautious interpretation needed for n-alkanes and lacustrine archives. Marine sediments record carbon isotopic variability in terrestrial biomarkers of 2 – 3‰, roughly equivalent to 20% variability in the C3/C4 vegetation contribution. The proportion of C4 vegetation apparently increased at times of low terrigenous dust input. Terrestrial sediments reveal much larger (2 – 10‰) shifts in n-alkanoic acid ÎŽ13C values. However, molecular abundance and isotopic composition suggest that microbial sources may also contribute fatty acids, contaminating the lacustrine sedimentary record of terrestrial vegetation.Funding was provided by the U.S. National Science Foundation HOMINID Grant 0218511

    Development of prefabricated retrofit module towards nearly zero energy buildings

    Get PDF
    The building sector is an energy intensive sector, with great potential to reduce energy needs and environmental pollution. Several measures are being taken to increase the energy efficiency and avoid energy consumption in this sector. A recent trend is the nearly zero energy buildings, which was already adopted by some of the latest regulations, such as the 2010 recast of the European Performance of Buildings Directive (EPBD). However, to reach these goals, especially considering the existing building stock, new retrofit solutions are required, which must be well adapted to the specific building stock needs, and ensure that the building retrofit can achieve the nearly zero energy buildings standards. This paper presents a new prefabricated retrofit module solution for the facades of existing buildings, and also the steps taken to optimise its performance, which includes a judicious choice of materials, 3D modelling, cost–benefit analysis, use of different simulation tools for performance optimisation and prototyping. It is also shown the implementation of the retrofit module within an integrated retrofit approach, whose final goal was to obtain a building with the minimum possible energy consumption and greenhouse gas emissions.This work was supported by ERDF funds through the Competitiveness Factors Operational Programme - COMPETE and National Funds through FCT - Foundation for Science and Technology [project number FCOMP-01-0124-FEDER-007189]. The author, Pedro Silva, was supported by FCT and DST, S.A. [grant number SFRH/BDE/15599/2006], which was co-financed by the Human Potential Operational Programme of the European Union POPH - NSRF - Type 4.1 - Advanced Training, shared by the European Social Fund and national funds MCTES

    An earlier origin for the Acheulian

    Get PDF
    The Acheulian is one of the first defined prehistoric technocomplexes and is characterized by shaped bifacial stone tools It probably originated in Africa, spreading to Europe and Asia perhaps as early as 1 million years (Myr) ago. The origin of the Acheulian is thought to have closely coincided with major changes in human brain evolution, allowing for further technological developments. Nonetheless, the emergence of the Acheulian remains unclear because well-dated sites older than 1.4Myr ago are scarce. Here we report on the lithic assemblage and geological context for the Kokiselei 4 archaeological site from the Nachukui formation (West Turkana, Kenya) that bears characteristic early Acheulian tools and pushes the first appearance datum for this stone-age technology back to 1.76Myr ago. Moreover, co-occurrence of Oldowan and Acheulian artefacts at the Kokiselei site complex indicates that the two technologies are notmutually exclusive time-successive components of an evolving cultural lineage, and suggests that the Acheulian was either imported from another location yet to be identified or originated from Oldowan hominins at this vicinity. In either case, the Acheulian did not accompany the first human dispersal from Africa despite being available at the time. This may indicate that multiple groups of hominins distinguished by separate stone-tool-making behaviours and dispersal strategies coexisted in Africa at 1.76Myr ago
    • 

    corecore