82 research outputs found

    Persistent hypertriglyceridemia in statin-treated patients with type 2 diabetes mellitus

    Get PDF
    Purpose: This paper reports the results of an audit that assessed the prevalence of residual hypertriglyceridemia and the potential need for intensified management among patients with statin-treated type 2 diabetes mellitus (T2DM) in primary care in the UK. Patients and methods: A cross-sectional, observational, systematic audit of patients with diagnosed diabetes from 40 primary care practices was undertaken. The audit collected basic demographic information and data on prescriptions issued during the preceding 4 months. T2DM patients were stratified according to the proportion that attained European Society of Cardiology treatment targets. Results: The audit collected data from 14,652 patients with diagnosed diabetes: 89.5% (n = 13,108) of the total cohort had T2DM. Of the people with T2DM, 22.2% (2916) were not currently receiving lipid-lowering therapy. Up to approximately 80% of these people showed evidence of dyslipidemia. Among the group that received lipid-lowering therapy, 94.7% (9647) were on statin monotherapy, which was usually simvastatin (69.5% of patients receiving statin monotherapy; 6707). The currently available statins were prescribed, with the most common dose being 40 mg simvastatin (44.2%; 4267). Irrespective of the statin used, around half of the patients receiving statin monotherapy did not attain the European Society of Cardiology treatment targets for triglycerides, low-density lipoprotein, high-density lipoprotein, and total cholesterol. Conclusion: T2DM patients managed in UK primary care commonly show persistent lipid abnormalities. Clinicians need to optimize compliance with lipid-lowering and other medications. Clinicians also need to consider intensifying statin regimens, prescribing additional lipid-modifying therapies, and specific treatments aimed at triglyceride lowering to improve dyslipidemia control in statin-treated patients with T2DM

    Two novel missense mutations in ABCA1 result in altered trafficking and cause severe autosomal recessive HDL deficiency

    Get PDF
    AbstractExtremely low concentrations of high density lipoprotein (HDL)-cholesterol and apolipoprotein (apo) AI are features of Tangier disease caused by autosomal recessive mutations in ATP-binding cassette transporter A1 (ABCA1). Less deleterious, but dominantly inherited mutations cause HDL deficiency. We investigated causes of severe HDL deficiency in a 42-year-old female with progressive coronary disease.ApoAI-mediated efflux of cholesterol from the proband's fibroblasts was less than 10% of normal and nucleotide sequencing revealed inheritance of two novel mutations in ABCAI, V1704D and L1379F. ABCA1 mRNA was approximately 3-fold higher in the proband's cells than in control cells; preincubation with cholesterol increased it 5-fold in control and 8-fold in the proband's cells, but similar amounts of ABCA1 protein were present in control and mutant cells. When transiently transfected into HEK293 cells, confocal microscopy revealed that both mutant proteins were retained in the endoplasmic reticulum, while wild-type ABCA1 was located at the plasma membrane.Severe HDL deficiency in the proband was caused by two novel autosomal recessive mutations in ABCA1, one (V1704D) predicted to lie in a transmembrane segment and the other (L1379F) in a large extracellular loop. Both mutations prevent normal trafficking of ABCA1, thereby explaining their inability to mediate apoA1-dependent lipid efflux

    Diabetes foot complications and standardized mortality rate in type 2 diabetes

    Get PDF
    Aim: To quantify the impact of foot complications on mortality outcomes in people with type 2 diabetes (T2D), and how routinely measured factors might modulate that risk. Materials and Methods: Data for individuals with T2D for 2010-2020, from the Salford Integrated Care Record (Salford, UK), were extracted for laboratory and clinical data, and deaths. Annual expected deaths were taken from Office of National Statistics mortality data. An index of multiple deprivation (IMD) adjusted the standardized mortality ratio (SMR_IMD). Life years lost per death (LYLD) was estimated from the difference between expected and actual deaths. Results: A total of 11 806 T2D patients were included, with 5583 new diagnoses and 3921 deaths during 2010-2020. The number of expected deaths was 2135; after IMD adjustment, there were 2595 expected deaths. Therefore, excess deaths numbered 1326 (SMR_IMD 1.51). No foot complications were evident in n = 9857. This group had an SMR_IMD of 1.13 and 2.74 LYLD. In total, 2979 patients had any foot complication recorded. In this group, the SMD_IMR was 2.29; of these, 2555 (75%) had only one foot complication. Patients with a foot complication showed little difference in percentage HbA1c more than 58 mmol/mol. In multivariate analysis, for those with a foot complication and an albumin-to-creatinine ratio of more than 3 mg/mmol, the odds ratio (OR) for death was 1.93, and for an estimated glomerular filtration rate of less than 60 mL/min/1.73m2, the OR for death was 1.92. Conclusions: Patients with T2D but without a foot complication have an SMR_IMD that is only slightly higher than that of the general population. Those diagnosed with a foot complication have a mortality risk that is double that of those without T2D

    Rapid Sampling of Molecular Motions with Prior Information Constraints

    Get PDF
    Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT). Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion

    Structural Biology by NMR: Structure, Dynamics, and Interactions

    Get PDF
    The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data

    A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data

    Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model.

    Get PDF
    Inflammation is an umbrella feature of ageing. It is present in the aged retina and many retinal diseases including age-related macular degeneration (AMD). In ageing and in AMD mitochondrial function declines. In normal ageing this can be manipulated by brief exposure to 670 nm light on the retina, which increases mitochondrial membrane potential and reduces inflammation. Here we ask if 670 nm exposure has the same ability in an aged mouse model of AMD, the complement factor H knockout (CFH(-/-)) where inflammation is a key feature. Further, we ask whether this occurs when 670 nm is delivered briefly in environmental lighting rather than directly focussed on the retina. Mice were exposed to 670 nm for 6 minutes twice a day for 14 days in the form of supplemented environmental light. Exposed animals had significant increase in cytochrome c oxidase (COX), which is a mitochondrial enzyme regulating oxidative phosphorylation.There was a significant reduction in complement component C3, an inflammatory marker in the outer retina. Vimetin and glial fibrillary acidic protein (GFAP) expression, which reflect retinal stress in Muller glia, were also significantly down regulated. There were also significant changes in outer retinal macrophage morphology. However, amyloid beta (Aβ) load, which also increases with age in the outer retina and is pro-inflammatory, did not change. Hence, 670 nm is effective in reducing inflammation probably via COX activation in mice with a genotype similar to that in 50% of AMD patients even when brief exposures are delivered via environmental lighting. Further, inflammation can be reduced independent of Aβ. The efficacy revealed here supports current early stage clinical trials of 670 nm in AMD patients
    corecore