62 research outputs found

    Assessment of 'on-treatment platelet reactivity' and relationship with cerebral micro-embolic signals in asymptomatic and symptomatic carotid stenosis

    Get PDF
    INTRODUCTION: The relationship between on-treatment platelet reactivity and cerebral micro-embolic signals (MES) is unknown, and has not been previously simultaneously assessed in asymptomatic and symptomatic carotid stenosis patients. METHODS: Consecutive eligible patients with ≥ 50% asymptomatic or recently symptomatic carotid stenosis (≤ 4 weeks following TIA/ischaemic stroke) were recruited to this pilot study. Symptomatic patients were followed up to the ‘late’ phase (≥ 3 months) following symptom onset or carotid intervention; longitudinal data were analysed from symptomatic patients with data available at both time-points. Platelet function/reactivity was assessed with the PFA-100® to measure collagen-ADP (C-ADP) and collagen-epinephrine (C-EPI) closure times in citrate-anticoagulated whole blood. Bilateral simultaneous 1-hour transcranial Doppler ultrasound (TCD) monitoring of the middle cerebral arteries was performed to classify patients as MES + ve or MES − ve. RESULTS: 31 patients with ≥ 50% asymptomatic and 46 with early symptomatic carotid stenosis or occlusion were included. 35 symptomatic patients were followed up to the late phase (23 following carotid intervention). Prevalence of ‘high on-treatment platelet reactivity’ (HTPR) on the C-EPI cartridge did not differ between asymptomatic and symptomatic patients overall, but was lower in ‘symptomatic post-intervention’ than asymptomatic patients on aspirin monotherapy (10% vs. 50%; p = 0.03). The prevalence of HTPR on the C-EPI cartridge decreased between the early and late phases in symptomatic patients (63% vs. 34%; p = 0.017), including those on aspirin monotherapy (p = 0.016). There were no significant differences in HTPR status between asymptomatic vs. early or late symptomatic MES + ve or MES − ve patients. DISCUSSION: Carotid interventional treatment, presumably in combination with resolution of the acute phase response, may decrease the prevalence of HTPR in patients with recently symptomatic carotid stenosis over time. Preliminary subgroup analysis suggests that successful intervention may reduce the prevalence of aspirin-HTPR in symptomatic patients to lower levels than asymptomatic medically-treated patients on aspirin monotherapy. Larger, longitudinal studies are warranted to reassess the impact of more intensive secondary preventive treatment on ex vivo platelet function at different levels of shear stress in carotid stenosis patients

    Understory Bird Communities in Amazonian Rainforest Fragments: Species Turnover through 25 Years Post-Isolation in Recovering Landscapes

    Get PDF
    Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1–100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1–2 preisolation samples and 4–5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction

    IPCC reasons for concern regarding climate change risks

    Get PDF
    The reasons for concern framework communicates scientific understanding about risks in relation to varying levels of climate change. The framework, now a cornerstone of the IPCC assessments, aggregates global risks into five categories as a function of global mean temperature change. We review the framework's conceptual basis and the risk judgments made in the most recent IPCC report, confirming those judgments in most cases in the light of more recent literature and identifying their limitations. We point to extensions of the framework that offer complementary climate change metrics to global mean temperature change and better account for possible changes in social and ecological system vulnerability. Further research should systematically evaluate risks under alternative scenarios of future climatic and societal conditions

    Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils

    Get PDF
    Nutrients constrain the soil carbon cycle in tropical forests, but we lack knowledge on how these constraints vary within the soil microbial community. Here, we used in situ fertilization in a montane tropical forest and in two lowland tropical forests on contrasting soil types to test the principal hypothesis that there are different nutrient constraints to different groups of microorganisms during the decomposition of cellulose. We also tested the hypotheses that decomposers shift from nitrogen to phosphorus constraints from montane to lowland forests, respectively, and are further constrained by potassium and sodium deficiency in the western Amazon. Cellulose and nutrients (nitrogen, phosphorus, potassium, sodium, and combined) were added to soils in situ, and microbial growth on cellulose (phospholipid fatty acids and ergosterol) and respiration were measured. Microbial growth on cellulose after single nutrient additions was highest following nitrogen addition for fungi, suggesting nitrogen as the primary limiting nutrient for cellulose decomposition. This was observed at all sites, with no clear shift in nutrient constraints to decomposition between lowland and montane sites. We also observed positive respiration and fungal growth responses to sodium and potassium addition at one of the lowland sites. However, when phosphorus was added, and especially when added in combination with other nutrients, bacterial growth was highest, suggesting that bacteria out-compete fungi for nitrogen where phosphorus is abundant. In summary, nitrogen constrains fungal growth and cellulose decomposition in both lowland and montane tropical forest soils, but additional nutrients may also be of critical importance in determining the balance between fungal and bacterial decomposition of cellulose

    Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight

    Get PDF
    Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world’s species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3–8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify conservation strategies that can avert biodiversity collapse. © 2016 Beaudrot et al

    Fasting

    No full text
    https://scholarlycommons.pacific.edu/cop-facbooks/1077/thumbnail.jp

    Fasting

    No full text

    Antiviral role of IFITM proteins in African swine fever virus infection

    Get PDF
    The interferon-induced transmembrane (IFITM) protein family is a group of antiviral restriction factors that impair flexibility and inhibit membrane fusion at the plasma or the endosomal membrane, restricting viral progression at entry. While IFITMs are widely known to inhibit several single-stranded RNA viruses, there are limited reports available regarding their effect in double-stranded DNA viruses. In this work, we have analyzed a possible antiviral function of IFITMs against a double stranded DNA virus, the African swine fever virus (ASFV). Infection with cell-adapted ASFV isolate Ba71V is IFN sensitive and it induces IFITMs expression. Interestingly, high levels of IFITMs caused a collapse of the endosomal pathway to the perinuclear area. Given that ASFV entry is strongly dependent on endocytosis, we investigated whether IFITM expression could impair viral infection. Expression of IFITM1, 2 and 3 reduced virus infectivity in Vero cells, with IFITM2 and IFITM3 having an impact on viral entry/uncoating. The role of IFITM2 in the inhibition of ASFV in Vero cells could be related to impaired endocytosis-mediated viral entry and alterations in the cholesterol efflux, suggesting that IFITM2 is acting at the late endosome, preventing the decapsidation stage of ASFV
    corecore