533 research outputs found

    The collagen chaperone HSP47 is a new interactor of APP that affects the levels of extracellular beta-amyloid peptides.

    Get PDF
    Alzheimer disease (AD) is a neurodegenerative disorder characterized by progressive decline of cognitive function that represents one of the most dramatic medical challenges for the aging population. Ab peptides, generated by processing of the Amyloid Precursor Protein (APP), are thought to play a central role in the pathogenesis of AD. However, the network of physical and functional interactions that may affect their production and deposition is still poorly understood. The use of a bioinformatic approach based on human/mouse conserved coexpression allowed us to identify a group of genes that display an expression profile strongly correlated with APP. Among the most prominent candidates, we investigated whether the collagen chaperone HSP47 could be functionally correlated with APP. We found that HSP47 accumulates in amyloid deposits of two different mouse models and of some AD patients, is capable to physically interact with APP and can be relocalized by APP overexpression. Notably, we found that it is possible to reduce the levels of secreted Ab peptides by reducing the expression of HSP47 or by interfering with its activity via chemical inhibitors. Our data unveil HSP47 as a new functional interactor of APP and imply it as a potential target for preventing the formation and/or growth amyloid plaques.The first is project n. A134, funded under the call ‘‘Bando Regionale sulla Ricerca Scientifica Applicata – 2004’’. The second is the DRUIDI (DRUg development In DIsease) project, funded under the call ‘‘Piattaforme Tecnologiche Innovative – 2008’’. The funder (Piedmont Region) had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer Reviewe

    ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules.

    Get PDF
    Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT-stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral-MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins

    p140Cap regulates memory and synaptic plasticity through Src-mediated and citron-N-mediated actin reorganization.

    Get PDF
    Abstract A major challenge in the neuroscience field is the identification of molecules and pathways that control synaptic plasticity and memory. Dendritic spines play a pivotal role in these processes, as the major sites of excitatory synapses in neuronal communication. Previous studies have shown that the scaffold protein p140Cap localizes into dendritic spines and that its knockdown negatively modulates spine shape in culture. However, so far, there is no information on its in vivo relevance. By using a knock-outmousemodel, we here demonstrate that p140Cap is a key element for both learning and synaptic plasticity. Indeed, p140Cap(-/-) mice are impaired in object recognition test, as well as in LTP and in LTD measurements. The in vivo effects of p140Cap loss are presumably attenuated by noncell-autonomous events, since primary neurons obtained from p140Cap(-/-) mice show a strong reduction in number of mushroom spines and abnormal organization of synapse-associated F-actin. These phenotypes are most likely caused by a local reduction of the inhibitory control of RhoA and of cortactin toward the actin-depolymerizing factor cofilin. These events can be controlled by p140Cap through its capability to directly inhibit the activation of Src kinase and by its binding to the scaffold protein Citron-N. Altogether, our results provide new insight into how protein associated with dynamic microtubules may regulate spine actin organization through interaction with postsynaptic density components

    Size-segregated particle number and mass concentrations from different emission sources in urban Beijing

    Get PDF
    Although secondary particulate matter is reported to be the main contributor of PM2.5 during haze in Chinese megacities, primary particle emissions also affect particle concentrations. In order to improve estimates of the contribution of primary sources to the particle number and mass concentrations, we performed source apportionment analyses using both chemical fingerprints and particle size distributions measured at the same site in urban Beijing from April to July 2018. Both methods resolved factors related to primary emissions, including vehicular emissions and cooking emissions, which together make up 76% and 24% of total particle number and organic aerosol (OA) mass, respectively. Similar source types, including particles related to vehicular emissions (1.6 +/- 1.1 mu gm(-3); 2.4 +/- 1.8 x 10(3) cm(-3) and 5.5 +/- 2.8 x 10(3) cm(-3) for two traffic-related components), cooking emissions (2.6 +/- 1.9 mu gm(-3) and 5.5 +/- 3.3 x 10(3) cm(-3)) and secondary aerosols (51 +/- 41 mu gm(-3) and 4.2 +/- 3.0 x 10(3) cm(-3)), were resolved by both methods. Converted mass concentrations from particle size distributions components were comparable with those from chemical fingerprints. Size distribution source apportionment separated vehicular emissions into a component with a mode diameter of 20 nm ("traffic-ultrafine") and a component with a mode diameter of 100 nm ("traffic-fine"). Consistent with similar day- and nighttime diesel vehicle PM2.5 emissions estimated for the Beijing area, traffic-fine particles, hydrocarbon-like OA (HOA, traffic-related factor resulting from source apportionment using chemical fingerprints) and black carbon (BC) showed similar diurnal patterns, with higher concentrations during the night and morning than during the afternoon when the boundary layer is higher. Traffic-ultrafine particles showed the highest concentrations during the rush-hour period, suggesting a prominent role of local gasoline vehicle emissions. In the absence of new particle formation, our re-sults show that vehicular-related emissions (14% and 30% for ultrafine and fine particles, respectively) and cooking-activity-related emissions (32 %) dominate the particle number concentration, while secondary particulate matter (over 80 %) governs PM2.5 mass during the non-heating season in Beijing.Peer reviewe

    Unprecedented Ambient Sulfur Trioxide (SO3) Detection : Possible Formation Mechanism and Atmospheric Implications

    Get PDF
    Sulfur trioxide (SO3) is a crucial compound for atmospheric sulfuric acid (H2SO4) formation, acid rain formation, and other atmospheric physicochemical processes. During the daytime, SO3 is mainly produced from the photo-oxidation of SO2 by OH radicals. However, the sources of SO3 during the early morning and night, when OH radicals are scarce, are not fully understood. We report results from two field measurements in urban Beijing during winter and summer 2019, using a nitrate-CI-APi-LTOF (chemical ionization-atmospheric pressure interface-long-time-offlight) mass spectrometer to detect atmospheric SO3 and H2SO4. Our results show the level of SO3 was higher during the winter than during the summer, with high SO3 levels observed especially during the early morning (similar to 05:00 to similar to 08:30) and night (similar to 18:00 to similar to 05:00 the next day). On the basis of analysis of SO2, NOx, black carbon, traffic flow, and atmospheric ions, we suggest SO3 could be formed from the catalytic oxidation of SO2 on the surface of traffic-related black carbon. This previously unidentified SO3 source results in significant H2SO4 formation in the early morning and thus promotes sub-2.5 nm particle formation. These findings will help in understanding urban SO3 and formulating policies to mitigate secondary particle formation in Chinese megacities.Peer reviewe
    • …
    corecore