1,199 research outputs found

    Ski Boot Soles Based on a Glass Fiber/Rubber Composite with Improved Grip on Icy Surfaces

    Get PDF
    Abstract A study on the effect of glass fibers/rubber composites on the grip on ice has been conducted in order to develop new materials for ski boot soles with increased grip in winter environments. The study has been conducted analyzing the friction of a composite material and of a ski boot sole containing an insert made of the composite material and comparing the results with those obtained using rubber and a thermoplastic elastomer. The analysis of the morphology of the composite surface, by Scanning Electron Microscopy, shows a homogenous distribution of glass fibers of approximately 10 μm of diameter in the rubber matrix. Moreover, the measure of the contact angle shows that the composite material has a higher water repellency compared to the rubber matrix. The measure of the coefficient of friction indicates a significant effect of the glass fibers on the grip on icy surfaces. The increased grip can be ascribed to the stiffness of the glass fibers that are able to have a mechanical grip on the ice surface and to the increased contact angle and water repellency of the composite that decrease the formation of a water layer below the sole

    Tumor derived Microvesicles enhance cross-processing ability of clinical grade Dendritic Cells

    Get PDF
    Tumor cells release extracellular microvesicles (MVs) in the microenvironment to deliver biological signals to neighbouring cells as well as to cells in distant tissues. Tumor-derived MVs appear to play contradictory role promoting both immunosuppression and tumor growth and both evoking tumor specific immune response. Recent evidences indicate that tumor-derived MVs can positively impact Dendritic Cells (DCs) immunogenicity by reprogramming DC antigen processing machinery and intracellular signaling pathways, thus promoting anti-tumor response. DCs are considered pivot cells of the immune system due to their exclusive ability to coordinate the innate and acquired immune responses, cross-present exogenous antigens and prime naïve T cells. DCs are required for the induction and maintenance of long-lasting anti-tumor immunity and their exploitation has been extensively investigated for the design of anti-tumor vaccines. However, the clinical grade culture conditions that are required to generate DCs for therapeutic use can strongly affect their functions. Here, we investigated the immunomodulatory impact of MVs carrying the MUC1 tumor glycoantigen (MVsMUC1) as immunogen formulation on clinical grade DCs grown in X-VIVO 15 (X-DCs). Results indicated that X-DCs displayed reduced performance of the antigen processing machinery in term of diminished phagocytosis and acidification of the phagosomal compartment suggesting an altered immunogenicity of clinical grade DCs. Pulsing DCs with MVsMUC1 restored phagosomal alkalinization, triggering ROS increase. This was not observed when a soluble MUC1 protein was employed (rMUC1). Concurrently, MVsMUC1 internalization by X-DCs allowed MUC1 cross-processing. Most importantly, MVsMUC1 pulsed DCs activated IFNγ response mediated by MUC1 specific CD8+ T cells. These results strongly support the employment of tumor-derived MVs as immunogen platforms for the implementation of DC-based vaccine

    Regulation of microRNAs in satellite cell renewal, muscle function, sarcopenia and the role of exercise

    Get PDF
    Sarcopenia refers to a condition of progressive loss of skeletal muscle mass and function associated with a higher risk of falls and fractures in older adults. Musculoskeletal aging leads to reduced muscle mass and strength, affecting the quality of life in elderly people. In recent years, several studies contributed to improve the knowledge of the pathophysiological alterations that lead to skeletal muscle dysfunction; however, the molecular mechanisms underlying sarcopenia are still not fully understood. Muscle development and homeostasis require a fine gene expression modulation by mechanisms in which microRNAs (miRNAs) play a crucial role. miRNAs modulate key steps of skeletal myogenesis including satellite cells renewal, skeletal muscle plasticity, and regeneration. Here, we provide an overview of the general aspects of muscle regeneration and miRNAs role in skeletal mass homeostasis and plasticity with a special interest in their expression in sarcopenia and skeletal muscle adaptation to exercise in the elderly

    Occupational exposure to organic dust and risk of lymphoma subtypes in the EPILYMPH case-control study

    Get PDF
    Objectives: This study aimed to estimate the risk of lymphoma and its major subtypes in relation to occupational exposure to specific organic dusts. Methods: We explored the association in 1853 cases and 1997 controls who participated in the EpiLymph case–control study, conducted in six European countries in 1998–2004. Based on expert assessment of lifetime occupational exposures, we calculated the risk of the major lymphoma subtypes associated with exposure to six specific organic dusts, namely, flour, hardwood, softwood, natural textile, synthetic textile, and leather, and two generic (any types) groups: wood and textile dusts. Risk was predicted with unconditional regression modeling, adjusted by age, gender, study center, and education. Results: We observed a 2.1-fold increase in risk of follicular lymphoma associated with ever exposure to leather dust [95% confidence interval (CI) 1.01–4.20]. After excluding subjects who ever worked in a farm or had ever been exposed to solvents, risk of B-cell lymphoma was elevated in relation to ever exposure to leather dust [odd ratio (OR) 2.2, 95% CI 1.00–4.78], but it was not supported by increasing trends with the exposure metrics. Risk of Hodgkin lymphoma was elevated (OR 2.0, 95% CI 0.95–4.30) for exposure to textile dust, with consistent upward trends by cumulative exposure and three independent exposure metrics combined (P=0.023, and P=0.0068, respectively). Conclusions: Future, larger studies might provide further insights into the nature of the association we observed between exposure to textile dust and risk of Hodgkin lymphoma

    Analytical development to support manufacturing of a sustainable vaccine against Invasive Nontyphoidal Salmonellosis

    Get PDF
    GVGH is developing a candidate trivalent Salmonella vaccine to fight invasive nontyphoidal Salmonellosis (iNTS) and typhoid fever, especially aimed for sub-Saharan Africa to impact disease burden and to reduce anti-microbial resistance spread. This trivalent vaccine may be the only viable option for a sustainable iNTS vaccine in sub-Saharan Africa over the separate administration of Typhoid Conjugate Vaccines (TCV) and a vaccine against iNTS. GVGH generated the iNTS-TCV formulation by combining the GMMA technology for the iNTS components, S. Typhimurium (STm) and S. Enteritidis (SEn) GMMA adsorbed on Alhydrogel, and the Vi-CRM197 glycoconjugate, originally developed by GVGH and recently WHO prequalified as TCV TYPHIBEV by Biological E Ltd (Hyderabad, India). A set of analytical methods to support the vaccine lot release and characterization have been developed by GVGH. In particular, to quantify the key active ingredients of iNTS components a competitive ELISA-based method (FAcE, Formulated Alhydrogel competitive ELISA assay) has been setup and characterized in terms of specificity, accuracy and precision. Vi component is instead characterized by means of HPAEC-PAD method, able to specifically identify and quantify the total polysaccharide in the final drug product. With regard to safety assessment, a Monocyte Activation Test (MAT) has been developed as to monitor the intrinsic pyrogenicity of GMMA-based vaccines and applied as surveillance test for the Phase 1 clinical lot, with the plan to set release criteria based on clinical experience. In vivo potency assay has been set to characterize the immunogenicity of vaccine lots in comparison to freshly formulated material at the time of release and during real-time stability. A significant antibody response to each of the active ingredients of the trivalent vaccine is raised in mice and assessed by Parallel Line Assay. Overall, the applied analytical panel and the results support the development of an iNTS-TCV vaccine as a viable option for a sustainable iNTS vaccine in sub-Saharan Africa

    Acute shock efficacy of the subcutaneous implantable cardioverter-defibrillator according to the implantation technique

    Get PDF
    Background: The traditional technique for subcutaneous implantable cardioverter defibrillator (S-ICD) implantation involves three incisions and a subcutaneous (SC) pocket. An intermuscular (IM) 2-incision technique has been recently adopted. Aims: We assessed acute defibrillation efficacy (DE) of S-ICD (DE ≤65 J) according to the implantation technique. Methods: We analyzed consecutive patients who underwent S-ICD implantation and DE testing at 53 Italian centers. Regression analysis was used to determine the association between DFT and implantation technique. Results: A total of 805 patients were enrolled. Four groups were assessed: IM + 2 incisions (n = 546), SC + 2 incisions (n = 133), SC + 3 incisions (n = 111), and IM + 3 incisions (n = 15). DE was ≤65 J in 782 (97.1%) patients. Patients with DE ≤65 J showed a trend towards lower body mass index (25.1 vs. 26.5; p = .12), were less frequently on antiarrhythmic drugs (13% vs. 26%; p = .06) and more commonly underwent implantation with the 2-incision technique (85% vs. 70%; p = .04). The IM + 2-incision technique showed the lowest defibrillation failure rate (2.2%) and shock impedance (66 Ohm, interquartile range: 57-77). On multivariate analysis, the 2-incision technique was associated with a lower incidence of shock failure (hazard ratio: 0.305; 95% confidence interval: 0.102-0.907; p = .033). Shock impedance was lower with the IM than with the SC approach (66 vs. 70 Ohm p = .002) and with the 2-incision than the 3-incision technique (67 vs. 72 Ohm; p = .006). Conclusions: In a large population of S-ICD patients, we observed a high defibrillation success rate. The IM + 2-incision technique provides lower shock impedance and a higher likelihood of successful defibrillation

    Lice, rodents, and many hopes: a rare disease in a young refugee

    Get PDF
    Borrelia recurrentis infection is a louse-borne disease and Leptospirosis is a rat-borne zoonosis, both endemic in areas characterized by a low hygiene condition. This is the first case of life-threatening Borrelia recurrentis and Leptospira species co-infectio

    PMCA-based detection of prions in the olfactory mucosa of patients with Sporadic Creutzfeldt-Jakob Disease

    Get PDF
    Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder caused by the conformational conversion of the prion protein (PrPC) into an abnormally folded form, named prion (or PrPSc). The combination of the polymorphism at codon 129 of the PrP gene (coding either methionine or valine) with the biochemical feature of the proteinase-K resistant PrP (generating either PrPSc type 1 or 2) gives rise to different PrPSc strains, which cause variable phenotypes of sCJD. The definitive diagnosis of sCJD and its classification can be achieved only post-mortem after PrPSc identification and characterization in the brain. By exploiting the Real-Time Quaking-Induced Conversion (RT-QuIC) assay, traces of PrPSc were found in the olfactory mucosa (OM) of sCJD patients, thus demonstrating that PrPSc is not confined to the brain. Here, we have optimized another technique, named protein misfolding cyclic amplification (PMCA) for detecting PrPSc in OM samples of sCJD patients. OM samples were collected from 27 sCJD and 2 genetic CJD patients (E200K). Samples from 34 patients with other neurodegenerative disorders were included as controls. Brains were collected from 26 sCJD patients and 16 of them underwent OM collection. Brain and OM samples were subjected to PMCA using the brains of transgenic mice expressing human PrPC with methionine at codon 129 as reaction substrates. The amplified products were analyzed by Western blot after proteinase K digestion. Quantitative PMCA was performed to estimate PrPSc concentration in OM. PMCA enabled the detection of prions in OM samples with 79.3% sensitivity and 100% specificity. Except for a few cases, a predominant type 1 PrPSc was generated, regardless of the tissues analyzed. Notably, all amplified PrPSc were less resistant to PK compared to the original strain. In conclusion, although the optimized PMCA did not consent to recognize sCJD subtypes from the analysis of OM collected from living patients, it enabled us to estimate for the first time the amount of prions accumulating in this biological tissue. Further assay optimizations are needed to faithfully amplify peripheral prions whose recognition could lead to a better diagnosis and selection of patients for future clinical trials

    Universal Newborn Screening for Congenital Cytomegalovirus Infection - From Infant to Maternal Infection: A Prospective Multicenter Study

    Get PDF
    Introduction: Most infants at risk for cytomegalovirus (CMV)-associated sensorineural hearing loss (SNHL) are unrecognized because of the absence of a universal neonatal CMV screening. The search of CMV-DNA by molecular methods in salivary swabs was demonstrated to be a reliable approach. This study describes the results obtained by carrying out a universal screening for congenital CMV (cCMV) infection including all live-born newborns in three Italian sites, as well as the therapeutic interventions and clinical outcome of the CMV-infected neonates. Moreover, CMV maternal infection's characteristics were evaluated. Methods: To confirm or exclude cCMV infection, a CMV-DNA-positive result on a first salivary swab was followed by repeated saliva and urine samples collected within 21 days of age. Breast milk samples were also collected. The search of CMV-DNA was performed with a single automated quantitative commercial real-time PCR assay, regardless of the type of samples used. Results: A total of 3,151 newborns were enrolled; 21 (0.66%) of them were congenitally infected (median saliva viral load at screening, 6.65 [range, 5.03-7.17] log10 IU/ml). Very low/low viral load in screening saliva samples (median value, 1.87 [range, 1.14-2.59] log10 IU/ml) was associated with false-positive results (n = 54; 1.7%). CMV-DNA was detected in almost half of the breast milk samples of mother-infant pairs with a false-positive result, suggesting that contamination from breast milk may not be the only explanation in the study population. cCMV infection confirmation with the search of CMV-DNA in a urine sample proved to be the gold standard strategy, since false-positive results were observed in 4/54 (7.5%) of the repeated saliva samples. Symptomatic cCMV infection was observed in 3/21 (14.3%) infants; notably, one (4.7%) developed moderate unilateral SNHL at 5 months after birth. Finally, two symptomatic cCMV infections were associated with primary maternal infection acquired in the first trimester of gestation; one newborn with severe cCMV symptoms was born to a mother with no CMV checkups in pregnancy. Conclusion: Without universal neonatal CMV screening, some infected infants who develop late neurological sequelae may not be recognized and, consequently, they are not able to benefit early from instrumental and therapeutic interventions to limit and/or treat CMV disease
    • …
    corecore