53 research outputs found

    AXL is an oncotarget in human colorectal cancer

    Get PDF
    AXL is a tyrosine kinase receptor activated by GAS6 and regulates cancer cell proliferation migration and angiogenesis. We studied AXL as new therapeutic target in colorectal cancer (CRC). Expression and activation of AXL and GAS6 were evaluated in a panel of human CRC cell lines. AXL gene silencing or pharmacologic inhibition with foretinib suppressed proliferation, migration and survival in CRC cells. In an orthotopic colon model of human HCT116 CRC cells overexpressing AXL, foretinib treatment caused significant inhibition of tumour growth and peritoneal metastatic spreading. AXL and GAS6 overexpression by immunohistochemistry (IHC) were found in 76,7% and 73.5%, respectively, of 223 human CRC specimens, correlating with less differentiated histological grading. GAS6 overexpression was associated with nodes involvement and tumour stage. AXL gene was found amplified by Fluorescence in situ hybridization (FISH) in 8/146 cases (5,4%) of CRC samples. Taken together, AXL inhibition could represent a novel therapeutic approach in CRC

    Multicenter Observational Retrospective Study on Febrile Events in Patients with Acute Myeloid Leukemia Treated with Cpx-351 in "Real-Life": The SEIFEM Experience

    Get PDF
    : In the present study, we aimed to evaluate the absolute risk of infection in the real-life setting of AML patients treated with CPX-351. The study included all patients with AML from 30 Italian hematology centers of the SEIFEM group who received CPX-351 from July 2018 to June 2021. There were 200 patients included. Overall, 336 CPX-351 courses were counted: all 200 patients received the first induction cycle, 18 patients (5%) received a second CPX-351 induction, while 86 patients (26%) proceeded with the first CPX-351 consolidation cycle, and 32 patients (10%) received a second CPX-351 consolidation. A total of 249 febrile events were recorded: 193 during the first or second induction, and 56 after the first or second consolidation. After the diagnostic work-up, 92 events (37%) were classified as febrile neutropenia of unknown origin (FUO), 118 (47%) were classifiable as microbiologically documented infections, and 39 (17%) were classifiable as clinically documented infections. The overall 30-day mortality rate was 14% (28/200). The attributable mortality-infection rate was 6% (15/249). A lack of response to the CPX-351 treatment was the only factor significantly associated with mortality in the multivariate analysis [p-value: 0.004, OR 0.05, 95% CI 0.01-0.39]. Our study confirms the good safety profile of CPX-351 in a real-life setting, with an incidence of infectious complications comparable to that of the pivotal studies; despite prolonged neutropenia, the incidence of fungal infections was low, as was infection-related mortality

    HMGB1 Attenuates Cardiac Remodelling in the Failing Heart via Enhanced Cardiac Regeneration and miR-206-Mediated Inhibition of TIMP-3

    Get PDF
    Aims: HMGB1 injection into the mouse heart, acutely after myocardial infarction (MI), improves left ventricular (LV) function and prevents remodeling. Here, we examined the effect of HMGB1 in chronically failing hearts. Methods and Results: Adult C57 BL16 female mice underwent coronary artery ligation; three weeks later 200 ng HMGB1 or denatured HMGB1 (control) were injected in the peri-infarcted region of mouse failing hearts. Four weeks after treatment, both echocardiography and hemodynamics demonstrated a significant improvement in LV function in HMGB1-treated mice. Further, HMGB1-treated mice exhibited a,23 % reduction in LV volume, a,48 % increase in infarcted wall thickness and a,14 % reduction in collagen deposition. HMGB1 induced cardiac regeneration and, within the infarcted region, it was found a,2-fold increase in c-kit + cell number, a,13-fold increase in newly formed myocytes and a,2-fold increase in arteriole length density. HMGB1 also enhanced MMP2 and MMP9 activity and decreased TIMP-3 levels. Importantly, miR-206 expression 3 days after HMGB1 treatment was 4-5-fold higher than in control hearts and 20–25 fold higher that in sham operated hearts. HMGB1 ability to increase miR-206 was confirmed in vitro, in cardiac fibroblasts. TIMP3 was identified as a potential miR-206 target by TargetScan prediction analysis; further, in cultured cardiac fibroblasts, miR-206 gain- and loss-offunction studies and luciferase reporter assays showed that TIMP3 is a direct target of miR-206. Conclusions: HMGB1 injected into chronically failing hearts enhanced LV function and attenuated LV remodelling; thes

    Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells

    Get PDF
    Tumor-promoted constraints negatively affect cytotoxic T lymphocyte (CTL) trafficking to the tumor core and, as a result, inhibit tumor killing. The production of reactive nitrogen species (RNS) within the tumor microenvironment has been reported in mouse and human cancers. We describe a novel RNS-dependent posttranslational modification of chemokines that has a profound impact on leukocyte recruitment to mouse and human tumors. Intratumoral RNS production induces CCL2 chemokine nitration and hinders T cell infiltration, resulting in the trapping of tumor-specific T cells in the stroma that surrounds cancer cells. Preconditioning of the tumor microenvironment with novel drugs that inhibit CCL2 modification facilitates CTL invasion of the tumor, suggesting that these drugs may be effective in cancer immunotherapy. Our results unveil an unexpected mechanism of tumor evasion and introduce new avenues for cancer immunotherapy

    Inflammation in thyroid oncogenesis.

    No full text
    It is commonly accepted that cancer is linked to inflammation. The possible mechanisms by which inflammation can contribute to carcinogenesis include induction of genomic instability, alterations in epigenetic events and subsequent inappropriate gene expression, enhanced proliferation of initiated cells, resistance to apoptosis, aggressive tumor neovascularization, invasion through tumor-associated basement membrane and metastasis. Inflammation also affects immune surveillance and responses to therapy. In this review, we overview the current understanding of different aspects of thyroid cancer and inflammation. Several studies have strongly suggested an increased risk of PTC in patients with Hashimoto's thyroiditis (HT), the most common autoimmune disease in thyroid cancer. Furthermore, an intense immune infiltrate is often associated with papillary thyroid carcinoma (PTC), and might play a critical role in the regulation of carcinogenesis and in carcinoma progression. The characterization of the most relevant inflammatory pathways of cancer-related inflammation (CRI) is instrumental for the identification of new target molecules that could lead to improved diagnosis and treatment

    Inflammation in thyroid oncogenesis

    No full text
    It is commonly accepted that cancer is linked to inflammation. The possible mechanisms by which inflammation can contribute to carcinogenesis include induction of genomic instability, alterations in epigenetic events and subsequent inappropriate gene expression, enhanced proliferation of initiated cells, resistance to apoptosis, aggressive tumor neovascularization, invasion through tumor-associated basement membrane and metastasis. Inflammation also affects immune surveillance and responses to therapy. In this review, we overview the current understanding of different aspects of thyroid cancer and inflammation. Several studies have strongly suggested an increased risk of PTC in patients with Hashimoto's thyroiditis (HT), the most common autoimmune disease in thyroid cancer. Furthermore, an intense immune infiltrate is often associated with papillary thyroid carcinoma (PTC), and might play a critical role in the regulation of carcinogenesis and in carcinoma progression. The characterization of the most relevant inflammatory pathways of cancer-related inflammation (CRI) is instrumental for the identification of new target molecules that could lead to improved diagnosis and treatment

    AXL Is a Novel Predictive Factor and Therapeutic Target for Radioactive Iodine Refractory Thyroid Cancer

    No full text
    Papillary thyroid carcinomas (PTCs) have an excellent prognosis, but a fraction of them show aggressive behavior, becoming radioiodine (RAI)-resistant and/or metastatic. AXL (Anexelekto) is a tyrosine kinase receptor regulating viability, invasiveness and chemoresistance in various human cancers, including PTCs. Here, we analyze the role of AXL in PTC prognosis and as a marker of RAI refractoriness. Immunohistochemistry was used to assess AXL positivity in a cohort of human PTC samples. Normal and cancerous thyroid cell lines were used in vitro for signaling, survival and RAI uptake evaluations. 38.2% of human PTCs displayed high expression of AXL that positively correlated with RAI-refractoriness and disease persistence or recurrence, especially when combined with v-raf murine sarcoma viral oncogene homolog B(BRAF) V600E mutation. In human PTC samples, AXL expression correlated with V-akt murine thymoma viral oncogene homolog 1 (AKT1) and p65 nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activation levels. Consistently, AXL stimulation with its ligand growth arrest-specific gene 6 (GAS6) increased AKT1- and p65 NF-kB-phosphorylation and promoted survival of thyroid cancer cell lines in culture. Enforced expression or activation of AXL in normal rat thyroid cells significantly reduced the expression of the sodium/iodide symporter (NIS) and the radioiodine uptake. These data indicate that AXL expression levels could be used as predictor of RAI refractoriness and as a possible novel therapeutic target of RAI resistant PTCs

    The Impact of Resolution of Inflammation on Tumor Microenvironment: Exploring New Ways to Control Cancer Progression

    No full text
    Non-resolving inflammation is an enabling feature of cancer. A novel super-family of lipid mediators termed Specialized Pro-resolving Mediators (SPMs) have a role as bioactive molecules mediating the resolution of inflammation in cancer biology. SPMs are derived from ω-3 and ω-6 polyunsaturated fatty acids through the activity of lipoxygenases. SPMs have been described to directly modulate cancer progression by interfering with the epithelial to mesenchymal transition and invasion of cancer cells. SPMs have also been demonstrated to act on several components of the tumor microenvironment (TME). Consistently with their natural immunomodulatory and anti-inflammatory properties, SPMs are able to reprogram macrophages to favor phagocytosis of cell debris, which are an important source of pro-inflammatory and pro-angiogenic signals; sustain a direct cytotoxic immune response against cancer cells; stimulate neutrophils anti-tumor activities; and inhibit the development of regulatory T and B cells, thus indirectly leading to enhanced anti-tumor immunity. Furthermore, the resolution pathways exert crucial anti-angiogenic functions in lung, liver, and gastrointestinal cancers, and inhibit cancer-associated fibroblast differentiation and functions in hepatocellular carcinoma and pancreatic cancer. The present review will be focused on the potential protective effects of resolution pathways against cancer, exerted by modulating different components of the TME
    • 

    corecore