3 research outputs found

    Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells

    No full text
    Studies on human fibroblasts have led to viewing senescence as a barrier against tumorigenesis. Using keratinocytes, we show here that partially transformed and tumorigenic cells systematically and spontaneously emerge from senescent cultures. We show that these emerging cells are generated from senescent cells, which are still competent for replication, by an unusual budding-mitosis mechanism. We further present data implicating reactive oxygen species that accumulate during senescence as a potential mutagenic motor of this post-senescence emergence. We conclude that senescence and its associated oxidative stress could be a tumor-promoting state for epithelial cells, potentially explaining why the incidence of carcinogenesis dramatically increases with advanced age. ©2009 American Association for Cancer Research.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Senescent Keratinocytes Die by Autophagic Programmed Cell Death

    No full text
    Normal cells reach senescence after a specific time and number of divisions, leading ultimately to cell death. Although escape from this fate may be a requisite step in neoplastic transformation, the mechanisms governing senescent cell death have not been well investigated. We show here, using normal human epidermal keratinocytes, that no apoptotic markers appear with senescence. In contrast, the expression of several proteins involved in the regulation of macroautophagy, notably Beclin-1 and Bcl-2, was found to change with senescence. The corpses occurring at the senescence growth plateau displayed a large central area delimited by the cytokeratin network that contained a huge quantity of autophagic vacuoles, the damaged nucleus, and most mitochondria. 3-methyladenine, an inhibitor of autophagosome formation, but not the caspase inhibitor zVAD, prevented senescent cell death. We conclude that senescent cells do not die by apoptosis, but as a result of high macroautophagic activity that targets the primary vital cell components
    corecore