93 research outputs found

    Perception of room modes in critical listening spaces

    Get PDF
    Room modes are a recognised problem in small critical listening rooms and are known to cause colouration of sound reproduced within them. Investigations on the causes and solutions for this problem have been carried out for some time. Interest in the topic has extended to loudspeaker manufacturers who have mainly concentrated in developing methods for controlling the loudspeaker-room interaction in order to ameliorate low frequency reproduction. Compared to objective work on passive and active control methods, the study of the subjective perception of room resonances has been somewhat neglected. Available publications mostly concern the effects of single resonances, which are perhaps not fully representative of conditions as experienced in real rooms. A study into the subjective perception of room modes is presented. The experimental methodology employs psychoacoustic techniques to study the perception of factors such as modal distribution, and effects of resonances on single tones. Results show that the subjective perception of room modes is strongly affected by temporal issues, and that changes exerted merely on magnitude frequency response are detectable but not likely to remove the effects of resonances for all listeners. Furthermore, it is shown that a reduction of the modal Q-factor, associated with a reduction of decay rates, has a significant effect in decreasing the detection of resonances. Q-factor difference limen were evaluated for three reference decay characteristics corresponding to reference Q-factors of 30, 10 and 1. The limen were 6±2.8, 10±4.1 and 16±5.4 respectively, meaning that detection of changes to modal decay decreases with decreasing decay time. These results may be used to define more perceptually relevant design guidelines for critical listening environments, and indicate target criteria for control techniques used in room correction. The outcomes of this investigation will have repercussions on the design of better rooms for critical listening.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A metric for predicting binaural speech intelligibility in stationary noise and competing speech maskers

    Get PDF
    One criterion in the design of binaural sound scenes in audio production is the extent to which the intended speech message is correctly understood. Object-based audio broadcasting systems have permitted sound editors to gain more access to the metadata (e.g., intensity and location) of each sound source, providing better control over speech intelligibility. The current study describes and evaluates a binaural distortion-weighted glimpse proportion metric -- BiDWGP -- which is motivated by better-ear glimpsing and binaural masking level differences. BiDWGP predicts intelligibility from two alternative input forms: either binaural recordings or monophonic recordings from each sound source along with their locations. Two listening experiments were performed with stationary noise and competing speech, one in the presence of a single masker, the other with multiple maskers, for a variety of spatial conïŹgurations. Overall, BiDWGP with both input forms predicts listener keyword scores with correlations of 0.95 and 0.91 for single- and multi-masker conditions, respectively. When considering masker type separately, correlations rise to 0.95 and above for both types of maskers. Predictions using the two input forms are very similar, suggesting that BiDWGP can be applied to the design of sound scenes where only individual sound sources and their locations are available

    Microphone handling noise : measurements of perceptual threshold and effects on audio quality

    Get PDF
    A psychoacoustic experiment was carried out to test the effects of microphone handling noise on perceived audio quality. Handling noise is a problem affecting both amateurs using their smartphones and cameras, as well as professionals using separate microphones and digital recorders. The noises used for the tests were measured from a variety of devices, including smartphones, laptops and handheld microphones. The signal features that characterise these noises are analysed and presented. The sounds include various types of transient, impact noises created by tapping or knocking devices, as well as more sustained sounds caused by rubbing. During the perceptual tests, listeners auditioned speech podcasts and were asked to rate the degradation of any unwanted sounds they heard. A representative design test methodology was developed that tried to encourage everyday rather than analytical listening. Signal-to-noise ratio (SNR) of the handling noise events was shown to be the best predictor of quality degradation. Other factors such as noise type or background noise in the listening environment did not significantly affect quality ratings. Podcast, microphone type and reproduction equipment were found to be significant but only to a small extent. A model allowing the prediction of degradation from the SNR is presented. The SNR threshold at which 50% of subjects noticed handling noise was found to be 4.2 ± 0.6 dBA. The results from this work are important for the understanding of our perception of impact sound and resonant noises in recordings, and will inform the future development of an automated predictor of quality for handling noise

    The Brazilian Developments on the Regional Atmospheric Modeling System (BRAMS 5.2): An Integrated Environmental Model Tuned for Tropical Areas

    Get PDF
    We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System where different previous versions for weather, chemistry and carbon cycle were unified in a single integrated software system. The new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. Together with the description of the main features are examples of the quality of the transport scheme for scalars, radiative fluxes on surface and model simulation of rainfall systems over South America in different spatial resolutions using a scale-aware convective parameterization. Besides, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America are shown. Atmospheric chemistry examples present model performance in simulating near-surface carbon monoxide and ozone in Amazon Basin and Rio de Janeiro megacity. For tracer transport and dispersion, it is demonstrated the model capabilities to simulate the volcanic ash 3-d redistribution associated with the eruption of a Chilean volcano. Then, the gain of computational efficiency is described with some details. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding on its functionalities and skills are discussed. At last, we highlight the relevant contribution of this work on the building up of a South American community of model developers

    The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas

    Get PDF
    We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS), in which different previous versions for weather, chemistry, and carbon cycle were unified in a single integrated modeling system software. This new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. The description of the main model features includes several examples illustrating the quality of the transport scheme for scalars, radiative fluxes on surface, and model simulation of rainfall systems over South America at different spatial resolutions using a scale aware convective parameterization. Additionally, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America, are shown. Atmospheric chemistry examples show the model performance in simulating near-surface carbon monoxide and ozone in the Amazon Basin and the megacity of Rio de Janeiro. For tracer transport and dispersion, the model capabilities to simulate the volcanic ash 3-D redistribution associated with the eruption of a Chilean volcano are demonstrated. The gain of computational efficiency is described in some detail. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near-surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding both its functionalities and skills are discussed. Finally, we highlight the relevant contribution of this work to building a South American community of model developers.CNPqFAPESPEarth System Research Laboratory at the National Oceanic and Atmospheric Administration (ESRL/NOAA), Boulder, USAInst Nacl Pesquisas Espaciais, Ctr Previsao Tempo & Estudos Climat, Cachoeira Paulista, SP, BrazilDiv CiĂȘncia da Computação, Instituto TecnolĂłgico de AeronĂĄutica, SĂŁo JosĂ© dos Campos, SP, BrazilUniv Estadual Paulista Unesp, Fac Ciencias, Bauru, SP, BrazilCtr Meteorol Bauru IPMet, Bauru, SP, BrazilUniv Fed Sao Paulo, Dept Ciencias Ambientais, Diadema, SP, BrazilUniv Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Sao Paulo, SP, BrazilUniv Fed Campina Grande, Dept Ciencias Atmosfer, Campina Grande, PB, BrazilEmbrapa Informat Agr, Campinas, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Sao Jose Dos Campos, SP, BrazilUniv Fed Rio Grande do Norte, Dept Ciencias Atmosfer & Climat, Programa Pos Grad Ciencias Climat, Natal, RN, BrazilInst Nacl Pesquisas Espaciais, Ctr Ciencias Sistema, Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Joao Del Rei, Dept Geociencias, Sao Joao Del Rei, MG, BrazilInst Nacl Pesquisas Espaciais, Lab Associado Computacao & Matemat Aplica, Sao Jose Dos Campos, BrazilUniv Evora, Inst Ciencias Agr & Ambientais Mediterr, Evora, PortugalUniv Lusofona Humanidades & Tecnol, Ctr Interdisciplinar Desenvolvimento Ambient Gest, Lisbon, PortugalUniv Fed Pelotas, Fac Meteorol, Pelotas, RS, BrazilUnive Tecnol Fed Parana, Londrina, PR, BrazilNASA, Goddard Space Flight Ctr, Univ Space Res Assoc, Goddard Earth Sci Technol & Res Global Modeling &, Greenbelt, MD USAUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Sao Jose Dos Campos, SP, BrazilCNPq: 306340/2011-9FAPESP: 2014/01563-1FAPESP: 2015/10206-0FAPESP: 2014/01564-8Web of Scienc

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
    • 

    corecore