59 research outputs found

    Analysis of Cerebrospinal Fluid Pressure Estimation Using Formulae Derived From Clinical Data

    Get PDF
    Purpose: To evaluate a frequently used regression model and a new, modified regression model to estimate cerebrospinal fluid pressure (CSFP). Methods: Datasets from the Beijing iCOP study from Tongren Hospital, Beijing, China, and the Mayo Clinic, Rochester, Minnesota, were tested in this retrospective, case-control study. An often-used regression model derived from the Beijing iCOP dataset, but without radiographic data, was used to predict CSFP by using demographic and physiologic data. A regression model was created using the Mayo Clinic dataset and tested against a validation group. The Mayo Clinic-derived formula was also tested against the Beijing Eye Study population. Intraclass correlation was used to assess predicted versus actual CSFP. Results: The Beijing-derived regression equation was reported to have an intraclass correlation coefficient (ICC) of 0.71, indicating strong correlation between predicted and actual CSFP in the study population. The Beijing iCOP regression model poorly predicted CSFP in the Mayo Clinic population with an ICC of 0.14. The Mayo Clinic-derived regression model similarly did not predict CSFP in its Mayo Clinic validation group (ICC 0.28 ± 0.04) nor in the Beijing Eye Study population (ICC 0.06). Conclusions: Formulae used to predict CSFP derived from clinical data fared poorly against a large retrospective dataset. This may be related to differences in lumbar puncture technique, in the populations tested, or the timing of collection of physiologic variables in the Mayo Clinic dataset. Caution should be used when interpreting results based on formulaic derivation of CSFP

    Mapping of the Disease Locus and Identification of ADAMTS10 As a Candidate Gene in a Canine Model of Primary Open Angle Glaucoma

    Get PDF
    Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide, with elevated intraocular pressure as an important risk factor. Increased resistance to outflow of aqueous humor through the trabecular meshwork causes elevated intraocular pressure, but the specific mechanisms are unknown. In this study, we used genome-wide SNP arrays to map the disease gene in a colony of Beagle dogs with inherited POAG to within a single 4 Mb locus on canine chromosome 20. The Beagle POAG locus is syntenic to a previously mapped human quantitative trait locus for intraocular pressure on human chromosome 19. Sequence capture and next-generation sequencing of the entire canine POAG locus revealed a total of 2,692 SNPs segregating with disease. Of the disease-segregating SNPs, 54 were within exons, 8 of which result in amino acid substitutions. The strongest candidate variant causes a glycine to arginine substitution in a highly conserved region of the metalloproteinase ADAMTS10. Western blotting revealed ADAMTS10 protein is preferentially expressed in the trabecular meshwork, supporting an effect of the variant specific to aqueous humor outflow. The Gly661Arg variant in ADAMTS10 found in the POAG Beagles suggests that altered processing of extracellular matrix and/or defects in microfibril structure or function may be involved in raising intraocular pressure, offering specific biochemical targets for future research and treatment strategies

    Cystatin A, a Potential Common Link for Mutant Myocilin Causative Glaucoma

    Get PDF
    Myocilin (MYOC) is a 504 aa secreted glycoprotein induced by stress factors in the trabecular meshwork tissue of the eye, where it was discovered. Mutations in MYOC are linked to glaucoma. The glaucoma phenotype of each of the different MYOC mutation varies, but all of them cause elevated intraocular pressure (IOP). In cells, forty percent of wild-type MYOC is cleaved by calpain II, a cysteine protease. This proteolytic process is inhibited by MYOC mutants. In this study, we investigated the molecular mechanisms by which MYOC mutants cause glaucoma. We constructed adenoviral vectors with variants Q368X, R342K, D380N, K423E, and overexpressed them in human trabecular meshwork cells. We analyzed expression profiles with Affymetrix U133Plus2 GeneChips using wild-type and null viruses as controls. Analysis of trabecular meshwork relevant mechanisms showed that the unfolded protein response (UPR) was the most affected. Search for individual candidate genes revealed that genes that have been historically connected to trabecular meshwork physiology and pathology were altered by the MYOC mutants. Some of those had known MYOC associations (MMP1, PDIA4, CALR, SFPR1) while others did not (EDN1, MGP, IGF1, TAC1). Some, were top-changed in only one mutant (LOXL1, CYP1B1, FBN1), others followed a mutant group pattern. Some of the genes were new (RAB39B, STC1, CXCL12, CSTA). In particular, one selected gene, the cysteine protease inhibitor cystatin A (CSTA), was commonly induced by all mutants and not by the wild-type. Subsequent functional analysis of the selected gene showed that CSTA was able to reduce wild-type MYOC cleavage in primary trabecular meshwork cells while an inactive mutated CSTA was not. These findings provide a new molecular understanding of the mechanisms of MYOC-causative glaucoma and reveal CSTA, a serum biomarker for cancer, as a potential biomarker and drug for the treatment of MYOC-induced glaucoma

    Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms.

    Get PDF
    Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings

    Consensus recommendation for mouse models of ocular hypertension to study aqueous humor outflow and its mechanisms

    Get PDF
    Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings

    ATP-sensitive potassium (KATP) channel openers diazoxide and nicorandil lower intraocular pressure by activating the Erk1/2 signaling pathway.

    No full text
    Elevated intraocular pressure is the most prevalent and only treatable risk factor for glaucoma, a degenerative disease of the optic nerve. While treatment options to slow disease progression are available, all current therapeutic and surgical treatments have unwanted side effects or limited efficacy, resulting in the need to identify new options. Previous reports from our laboratory have established a novel ocular hypotensive effect of ATP-sensitive potassium channel (KATP) openers including diazoxide (DZ) and nicorandil (NCD). In the current study, we evaluated the role of Erk1/2 signaling pathway in KATP channel opener mediated reduction of intraocular pressure (IOP). Western blot analysis of DZ and NCD treated primary normal trabecular meshwork (NTM) cells, human TM (isolated from perfusion cultures of human anterior segments) and mouse eyes showed increased phosphorylation of Erk1/2 when compared to vehicle treated controls. DZ and NCD mediated pressure reduction (p0.1). Histologic evaluation of transmission electron micrographs from DZ + U0126 and NCD + U0126 treated eyes revealed no observable morphological changes in the ultrastructure of the conventional outflow pathway. Taken together, the results indicate that the Erk1/2 pathway is necessary for IOP reduction by KATP channel openers DZ and NCD

    Correction: Ocular Hypotensive Effects of the ATP-Sensitive Potassium Channel Opener Cromakalim in Human and Murine Experimental Model Systems.

    No full text
    Elevated intraocular pressure (IOP) is the most prevalent and only treatable risk factor for glaucoma, a leading cause of irreversible blindness worldwide. Unfortunately, all current therapeutics used to treat elevated IOP and glaucoma have significant and sometimes irreversible side effects necessitating the development of novel compounds. We evaluated the IOP lowering ability of the broad spectrum KATP channel opener cromakalim. Cultured human anterior segments when treated with 2 μM cromakalim showed a decrease in pressure (19.33 ± 2.78 mmHg at 0 hours to 13.22 ± 2.64 mmHg at 24 hours; p<0.001) when compared to vehicle treated controls (15.89 ± 5.33 mmHg at 0 h to 15.56 ± 4.88 mmHg at 24 hours; p = 0.89). In wild-type C57BL/6 mice, cromakalim reduced IOP by 18.75 ± 2.22% compared to vehicle treated contralateral eyes (17.01 ± 0.32 mmHg at 0 hours to 13.82 ± 0.37 mmHg at 24 hours; n = 10, p = 0.002). Cromakalim demonstrated an additive effect when used in conjunction with latanoprost free acid, a common ocular hypotensive drug prescribed to patients with elevated IOP. To examine KATP channel subunit specificity, Kir6.2(-/-) mice were treated with cromakalim, but unlike wild-type animals, no change in IOP was noted. Histologic analysis of treated and control eyes in cultured human anterior segments and in mice showed similar cell numbers and extracellular matrix integrity within the trabecular meshwork, with no disruptions in the inner and outer walls of Schlemm's canal. Together, these studies suggest that cromakalim is a potent ocular hypotensive agent that lowers IOP via activation of Kir6.2 containing KATP channels, its effect is additive when used in combination with the commonly used glaucoma drug latanoprost, and is not toxic to cells and tissues of the aqueous humor outflow pathway, making it a candidate for future therapeutic development
    • …
    corecore