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Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are
a valuable model system to study the generation and mechanisms modulating conven-
tional outflow resistance and thus intraocular pressure. In addition, mouse models are
critical for understanding the complex nature of conventional outflow homeostasis and
dysfunction that results in ocular hypertension. In this review, we describe a set of mini-
mum acceptable standards for developing, characterizing, and utilizing mouse models
of open-angle ocular hypertension. We expect that this set of standard practices will
increase scientific rigor when using mouse models and will better enable researchers to
replicate and build upon previous findings.

Keywords: mouse model, conventional outflow, glaucoma, intraocular pressure, ocular
hypertension, outflow facility
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Glaucoma, a complex group of optic neuropathies, is
the leading cause of irreversible blindness worldwide.

Elevation of intraocular pressure (IOP) is a key risk factor
for the most common form of primary open-angle glaucoma
(POAG). Although there are no cures for glaucoma, prospec-
tive randomized multicenter studies provide convincing
evidence that pharmacological and/or surgical interventions
that specifically lower IOP can slow the progression of
disease in all forms of glaucoma.1–5 The purpose of this posi-
tion paper is to provide the research community with mini-
mum acceptable standards to develop and evaluate mouse
models of ocular hypertension (OHT), as well as provide
guidelines for developing and validating new mouse models
of OHT.

IOP is generated by the production and drainage of
aqueous humor (AH), a clear fluid that provides nutrients
to the avascular tissues of the anterior eye. Under normal
physiological circumstances, AH is actively secreted by the
ciliary epithelium and flows between the lens and iris into
the anterior chamber, where it exits via two pathways, the
conventional pathway and the unconventional (uveoscle-
ral and uveovortex) pathway. AH drainage via the conven-
tional outflow pathway is pressure dependent; this route
is comprised of the trabecular meshwork (a sponge-like
connective tissue), Schlemm’s canal (SC), collector channels,
and the episcleral vasculature, where AH joins the venous
system (Fig. 1). A smaller fraction of AH is drained passively
through the unconventional pathway, where it is removed
from the anterior chamber either via the uveal veins into the
vortex veins or by passing through the interstitial spaces of
the sclera to enter the scleral and orbital vessels.6 The scle-
ral route is usually used by particles traveling in the uncon-
ventional pathway. Unconventional outflow passes through
the ciliary muscle and into the suprachoroidal space, but the
pathway taken from the suprachoroidal space to exit the eye
has been debated.

The primary resistance to AH drainage from the ante-
rior chamber occurs in the conventional outflow pathway.
To maintain normal IOP, the interface between the trabecu-

lar meshwork (TM; juxtacanalicular region) and the inner
wall of SC actively generates and modulates 50% to 75%
of the total outflow resistance, whereas the remainder of
resistance (25%–50%) occurs distal to the outer wall of SC,
as shown in human eyes.7–12 In patients with POAG, an
increase in fibrillar extracellular matrix deposition has been
observed in the juxtacanalicular region.13–16 This increase
correlates with axonal damage of the optic nerve.17 More-
over, there is increased stiffness of both the juxtacanalicular
region and the SC endothelium in eyes with POAG that
correlates with low outflow facility and likely contributes
to elevated IOP.13,18 Emerging evidence suggests a role for
the distal outflow vessels in regulating IOP via vasomo-
tion. Further investigation with newly identified agents that
relax vessel constriction in this area should prove useful in
defining the role of distal vessel constriction in OHT and
POAG.9,19–26 In fact, in a recent study it was shown that
the effects of netarsudil, a new glaucoma treatment drug,
partially involves lowering distal outflow resistance by dilat-
ing episcleral veins.27–29

Hereditary predispositions contribute to glaucoma risk,
although the genetics are complex. To date, over 100 glau-
coma and IOP-related genes have been identified. More
work is needed to translate these discoveries to a molec-
ular understanding of glaucoma pathophysiology in general
and TM function in particular. Current challenges in human
glaucoma genetics research include a lack of detailed under-
standing of genotype–phenotype relationships, a paucity of
high-penetrant Mendelian variants for the disease, the fact
that individually most of the discovered variants have very
modest impact on the disease, and, finally, that POAG, the
most common form of glaucoma, results from a complex
interplay of genes that contribute to TM dysfunction and
optic nerve vulnerability to degeneration. Based on the
nature of the disease, it is clear that the genetic component
of glaucoma is heterogeneous and includes many genes with
modest effect sizes.30 It is thus necessary and critical to eval-
uate the contribution of the genes to glaucoma through the
use of appropriate animal models.

FIGURE 1. Schematic diagram of outflow pathway and structures in the trabecular meshwork. (A) Schematic diagram depicting conven-
tional and uveoscleral pathway in the anterior eye chamber. (B) A magnified view of trabecular meshwork (TM) depicting distal regions
including collector channel entrances (CCEs), collector channels (CCs), episcleral vein (EV), and aqueous vein (AV). CB, ciliary body; SC,
Schlemm’s canal; IW, inner wall; JCT, juxtacanalicular. Reprinted with permission from Carreon T, van der Merwe E, Fellman RL, Johnstone
M, Bhattacharya SK. Aqueous outflow - a continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res. 2017;57:108–133.
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Models of OHT in rats, dogs, cats, and monkeys exist,
but each has its own challenges, including the availability
of genetic resources and difficulty of genetic manipulation,
ethical considerations, cost, and maintenance. Thus, mice
have become an attractive animal model, as they are geneti-
cally similar to humans, and their ocular anatomy and phys-
iology are comparable to those of humans, including that of
the conventional outflow pathway.31–37 In addition, because
mice can be readily genetically manipulated and there is a
wide array of mouse resources and genetic tools, specific
genes can be targeted to gain a better understanding of
their role in disease or to potentially uncover modifier genes
leading to a variety of phenotypes. Mice, therefore, provide
powerful in vivo tools for studying complex diseases that are
mediated by complex tissues, such as OHT, which is influ-
enced by the tissues contributing to conventional outflow
resistance.38–41

Several mouse models of OHT that aid our under-
standing of glaucomatous pathophysiology have been
described previously and extensively reviewed.41 Although
the purpose of this position paper is to provide the research
community with minimum acceptable standards to develop
and evaluate mouse models of OHT, these recommenda-
tions specifically apply to models in which OHT is produced
through perturbations in the conventional outflow pathway
leading to decreased outflow facility and elevated IOP.

OHT Phenotypes in Models Currently in Use and
Minimum Acceptable Standards

Mouse models of glaucoma currently described in the
literature include both pressure-dependent and pressure-
independent models, as previously extensively reviewed.41

Each model has its strengths and weaknesses. For exam-
ple, models that utilize microbead occlusion, injection of oil
or viscous agents, laser photocoagulation, or circumlimbal
sutures are valuable for investigating the effect of OHT on
neurodegeneration of retinal ganglion cells. Likewise, the
DBA/2J mouse (an iris atophy/pigment dispersion model)
is an important model system to study IOP elevation in
pigmentary glaucoma. DBA/2J genes affecting melanosomal
biology contribute to DBA/2J glaucoma and some human
pigmentary glaucoma.42–45 The nee mouse model (congen-
ital glaucoma model, Sh3pxd2bnee mutation) is a valuable
resource for studying early-onset glaucoma, as well as for
studying glaucomatous neurodegeneration.43,46–48 However,
models in which OHT is developed or induced by physi-
cally blocking or sclerosing the AH outflow pathways are not
necessarily appropriate to study TM biology or AH outflow
pathology. Model systems that recapitulate the human condi-
tion and harbor the necessary phenotypes within the
conventional outflow pathway are the most relevant and are
necessary for assessing the role of the TM, SC, and distal
region in generating elevated IOP and outflow dysfunction
in open-angle glaucoma. Examples of these include genetic
models of glaucoma (MyocY437H mice), OHT induced by
transduction of the TM with glaucoma-related genes (e.g.,
MYOC, TGFβ2, GREM1, CTGF, DKK1, SFRP1, CD44, Cre
and inducible transgene models, genome editing),49–56 as
well as glucocorticoid-induced OHT models.14,57–61 Lmx1b
models also have direct relevance to both developmental and
open-angle human glaucoma.62–64 We will use the MyocY437H

mouse as an example to describe appropriate character-
istics of a pressure-dependent model system for studying
OHT.

MYOCY437H Transgenic Mice

Glaucoma is a multifactorial disease involving multiple
genes that contribute to the phenotype; therefore, it is
rare for a mutation in a single gene to be identified as a
cause for the disease. One such gene is myocilin, which
was initially identified in two families with early-onset IOP
elevation resulting in the development of POAG.65 Subse-
quent studies demonstrated that myocilin mutations are
found in up to 36% of juvenile open-angle glaucoma and
3% to 4% of patients with POAG.66 All disease-causing muta-
tions of the gene appear to act in an autosomal dominant
fashion.

Clinical studies indicate that someMYOCmutations result
in an early-onset phenotype with comparatively high IOPs,
whereas others impart less severe disease, similar to late-
onset POAG.67 Based on the observation that patients with a
mutation changing the tyrosine in position 437 to a histidine
(Tyr437His) often develop very high IOP in their second
or third decade of life, Zode et al.68 generated a trans-
genic mouse expressing human MYOC Tyr437His under the
control of the cytomegalovirus promoter referred to as Tg-
MYOCY437H. The resulting mice express high levels of mutant
myocilin in the trabecular meshwork and sclera but not in
the neural retina, despite the use of a universal promoter. Tg-
MYOCY437H mice are healthy and breed well, and, apart from
the ocular phenotype, no other phenotypic effects of the
transgene have been described. The eyes of these animals
are normal at birth, but around the age of 4 months a
decline in AH outflow facility can be detected in many eyes,
although this does not yet correlate to increased IOP.69–71

The development of reduced outflow facility is accompanied
by morphological changes in the TM, including decreased
intertrabecular space, distended endoplasmic reticulum in
TM cells, and a gradual decline in the TM cellular density.68

At around 6 months of age, outflow facility continues to
decrease and a significant elevation of IOP can be detected
in most mice. Between 6 and 14 months of age, outflow
facility remains low, with a stable IOP elevation. These mice
show a moderate rise in IOP during the day (approximately
16 mmHg in isoflurane-anesthetized Tg-MYOCY437H vs.
11.5 mmHg in control mice), and at night, when most mice
display higher baseline IOPs, robust differences between
MYOCY437H transgenic mice and control animals persist
(around 21 mmHg vs. 15 mmHg, respectively).68,72 The
development of elevated IOP in this model results in mild
and progressive loss of RGCs and optic nerve axons. The
absolute number of RGCs lost varies slightly among labo-
ratories, presumably due to methodological differences, but
typically around 20% of RGCs are lost at the age of 6 months
and 40% to 50% at the age of 12 months in MYOCY437H trans-
genic mice compared with age-matched controls.68,69

The Tg-MYOCY437H mice have many advantages as a
model of OHT; however, the degree of IOP elevation
can vary based on the genetic background of the mouse
strain selected for inducing the MYOCY437H mutation.51 In
the initial description of the model, the investigators used
transgenic mice on a mixed background of C57BL/6J and
Swiss James Lambert (SJL), a cross commonly employed in
the generation of transgenic animals.68 In contrast, some
reports show a milder or no phenotype in mice back-
crossed or otherwise crossed to C57BL/6 and other genetic
backgrounds.73–78 The reason for these differences among
laboratories may be related to differences in methodology,
complex environmental interactions, inadvertent divergence
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into substrains, or the exact genetic context including contri-
butions from SJL. Because the phenotype of this trans-
gene appears to be dependent upon complicated genetic
and/or environmental conditions that are lab dependent, Tg-
MYOCY437H mice must be properly characterized before use
in a study and the genetic background clearly defined.

One approach to counter the variability observed in
the Tg-MYOCY437H phenotype is to maintain the animals in
C57BL/6J breeders with confirmed genetic background. It is
recommended to mate Tg-MYOCY437H mice on a C57BL/6J
background to SJL mice to produce F1 litters to be used
as experimental animals. This will result in all mice being
heterozygous for all alleles, with half of their genome
contributed by each strain. As a result, the probability that
the dominant MYOCY437H transgene modifies IOP is maxi-
mized. Although this approach can easily be maintained,
it poses difficulties when the experimental design requires
elevated IOP in knockout mice, which are mostly avail-
able on a C57BL/6J background. Simply crossing these
into Tg-MYOCY437H mice will result in a higher proportion
of C57BL/6J and a reduced IOP phenotype that can be
mistaken for a “rescue.” An appropriate breeding strategy
would instead involve transfer of the knockout alleles into
both C57BL/6J and SJL strains and subsequent production of
experimental mice as outlined above. Although this is a slow
process, it may be a viable solution for laboratories focused
on studying specific genes. Investigators seeking to evalu-
ate the effects of multiple genes in glaucoma may want to
consider other models or other approaches that can account
for the experimental bias.

Summary of Recommendations

• Tg-MYOCY437H mice have many advantages as a
mouse model of OHT.

• Genetic background and other factors affect the
degree of IOP elevation and rate of age-related
axon loss in Tg-MYOCY437H mice. A detailed
description of genetic background, breeding
strategies, and housing environment/diet should
be included in all publications.

MINIMUM ACCEPTABLE STANDARDS FOR THE

DESCRIPTION OF MOUSE MODELS OF OHT

Mouse models used to study outflow physiology must
demonstrate elevated IOP or at the very least decreased
outflow facility and open iridocorneal angles and must
include histologic descriptions of the morphology of the
conventional outflow tract (TM, SC, collector channels, and
intrascleral and episcleral regions). Additional features may
include assessment of TM cell numbers and identification of
high- and low-flow regions. Analysis of the TM ultrastruc-
ture by electron microscopy techniques is also preferred to
assess extracellular matrix (ECM) changes in juxtacanalicu-
lar tissue (JCT), cellular health, cell loss, and intactness of
trabecular beams, JCT, and the inner wall of SC.34,36,57,79–82

Intraocular Pressure Measurements

There are several established methods to measure and
analyze IOP, with different groups trusting different meth-

ods. The most common and least invasive approach to
IOP measurement is with the TonoLab rebound tonometer
(iCare Finland, Vantaa, Finland).83–88 In addition, micronee-
dle cannulation methods also provide accurate IOP measure-
ments; however, caution should be taken when perform-
ing repeated measurements.89,90 Here, we describe only best
practices for measuring IOP using the TonoLab tonometer,
which was specifically designed for the rodent eye. The
TonoLab tonometer has been well studied, and calibration
studies have demonstrated its accuracy in inbred mice and
spontaneous and induced mouse models of glaucoma.83,91

However, changes in corneal and other ocular proper-
ties have the potential to affect readings, and appropriate
caution should be taken to account for mouse strain differ-
ences or other factors that influence corneal biomechanical
properties.

The TonoLab rebound tonometer uses a small force to
propel a very lightweight probe against the cornea. Because
the resulting impact with the cornea is slight, local corneal
anesthesia is not necessary.92 This procedure can be done
in conscious mice following acclimation to handling proce-
dures and can even be performed several times daily by a
skilled user. The animals tolerate the measurement process
well when they have become acclimated to the tonome-
try procedure, and there are no undesirable effects on the
ocular surface (if used appropriately) either during the IOP
measurement or afterward.83 In order to measure the IOP,
the user must lightly press the measurement button. The
tip of the probe should contact the central cornea with a
perpendicular trajectory with the probe tip positioned 1 to
4 mm from the cornea surface. Whiskers may have to be
trimmed to prevent them from getting in the way of the
probe. For each IOP measurement, the tonometer probe
strikes the center of the cornea six times consecutively;
after each successful measurement, there is a short beep.
A double beep indicates an inconsistent reading, which the
instrument excludes. After six successful measurements, the
IOP is computed using an algorithm based on probe incident
velocity and deceleration, and the resulting value is shown
on the display. It is best practice to repeat the measurement
series at least three times and then average the three result-
ing readings.

The TonoLab rebound tonometer is designed and adver-
tised to be handheld; however, some users find it impor-
tant to have the tonometer stabilized and fixed with clamps
connected to a ring stand. Mounting and securing the
tonometer can eliminate any slight movements by the user,
especially when pressing the measurement button, resulting
in more consistent measurements and fewer error messages.
A foot switch can also be useful to keep the tonometer from
moving during measurements. In addition, it is necessary to
keep the probe in a horizontal orientation, which can be
difficult without the tonometer securely mounted.

The mice should be acclimatized to the procedure at least
1 week prior to measurement. Handling of mice should be
minimized and must be done gently so as not to stress the
mice. Ambient noise levels should be kept as low as possi-
ble. The investigator needs to be calm and handle the mice
gently, as mice are sensitive to stress, which can skew IOP
measurements.

Many investigators find it best to measure IOP in anes-
thetized mice. It is well known that anesthesia affects IOP,
and care should be taken to acknowledge and/or avoid
this occurrence.84,85 Specifically, anesthetic agents, includ-
ing xylazine, lower IOP, whereas ketamine usually appears
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to increase IOP84,85,93,94; however, some reports describe
ketamine as either having no effect on IOP or reducing
IOP in a time-dependent manner.93,95,96 Different doses,
mouse strains, routes of administration, or environments
may contribute to these differences. To avoid an effect of
ketamine/xylazine, it is recommended that intraperitoneal
injections of 99 mg/kg ketamine and 9 mg/kg xylazine
be used and that measurements are made within the first
12 minutes after injection. Adequate anesthesia is usually
obtained in 3 to 4 minutes.85 Another common and well-
established method is to use isoflurane anesthesia, although
it should be noted that IOP drops steadily after isoflurane,
especially in the first 5 minutes of isoflurane exposure96,97;
therefore, IOP should be measured within 2 to 3 minutes of
anesthetic exposure. To alleviate the effect of anesthesia, IOP
measurements can also be taken in conscious animals.51,83

However, this method is more challenging and great care
must be made to train the animals for at least a week before
measuring pressures. For conscious IOP measurements, the
animals can be gently restrained in a DecapiCone, placed on
a custom-made restrainer (similar to those pictured in Wang
et al.83 or Nissirios et al.98), and then placed on a platform
of adjustable height. Whatever the method of IOP measure-
ment, all details should be clearly stated in the methods of
publications.

Whenever possible, the investigator measuring IOP
should be masked to the genotypes or experimental status
of the animals, and animals of different genotypes/treatment
should be interspersed during measurements of IOP. The
time of day when IOP measurements are taken should be
consistent throughout an experiment, as IOP changes with
natural circadian rhythms.85,99 When IOP is measured during
the night or lights-off cycle, the use of a red light is widely
accepted as a practical means to minimizes disruptions to
circadian patterns100 and thus helps to maintain normal fluc-
tuations in IOP, which is also circadian.101,102

Any genetic and/or procedural methods that impact the
health or biomechanical properties of the cornea may affect
the ability of the tonometer to provide accurate measure-
ments; therefore, documentation of such effects, as well
as control experiments (calibrations), must be included to
demonstrate accurate IOP measurements. Although suppli-
ers guarantee calibration, calibration should be periodically
manometrically checked as previously described.91 Finally,
sex differences in IOP, although reportedly modest, have
been observed in some strains of mice.85 Given the NIH
policy on sex as a biological variable, it is important for
US investigators that appropriately powered groups of male
and female mice be included in IOP studies unless scientific
justification is provided otherwise.

Summary of Recommendations

• The TonoLab rebound tonometer is an accurate,
non-invasive tool to measure IOP in mice.

• The tonometer should be used in a manner that
minimizes tonometer movement and allows the
tip of the probe to remain horizontal and strike
the center of the cornea perpendicularly.

• Repeated successful measurements are taken to
get one IOP value from the TonoLab. A total of at
least three resulting IOP values should be aver-
aged per eye.

• If using isoflurane anesthesia, IOP measurements
should be taken within 2 to 3 minutes of anes-
thetic exposure.

• If using ketamine/xylazine anesthesia, IOP
measurements should be taken within 12 minutes
of anesthetic exposure.

• The time of day at which IOP measurements
are taken should be noted and remain consistent
throughout the course of an experiment.

Ex Vivo and In Vivo Outflow Facility
Measurements

Outflow facility is typically measured by perfusion, in which
fluid is either (1) infused into the eye at one or more
known pressures and the resulting flow rates are measured
(pressure-controlled approach), or (2) infused into the eye
at one or more known flow rates and the resulting pres-
sures are measured (flow-controlled approach). Perfusion of
mouse eyes ex vivo or in vivo is a technically challenging
procedure that requires excellent laboratory skills, suitable
hardware, attention to minute details, and appropriate data
and statistical analytical approaches. It can take 6 or more
months for a researcher to become proficient at perfusion
measurements in mouse eyes. Here, we describe best prac-
tices for both ex vivo and in vivo outflow facility measure-
ments.

Ex Vivo Outflow Facility Measurements. Ex vivo
measurements of outflow facility have the advantage of
functionally isolating the conventional outflow pathway and
avoiding the added difficulty of measuring/accounting for
other physiological variables that are relevant during in
vivo perfusion (episcleral venous pressure, aqueous inflow
rate, unconventional outflow). Below we describe important
considerations for conducting physiologically appropriate
ex vivo mouse eye perfusions.

Hardware Requirements. It is of interest to consider
normal AH inflow rate in the mouse eye, as this will deter-
mine accuracy and resolution of the hardware for perfus-
ing the eye. Furthermore, perfusing eyes at flow rates far in
excess of normal inflow rates can lead to non-physiological
effects and must be avoided. The determination of inflow
rate in the mouse eye has been described in several stud-
ies. Cole103 tabulated the anterior chamber turnover rate in
various mammalian species as determined by various dilu-
tion methods and reported an average turnover rate, defined
as inflow rate divided by anterior chamber volume, of
0.014 min−1, with a range of 0.009 to 0.021 min−1 (i.e.,
0.9%–2.1% of the anterior chamber volume is turned over
per minute). Aihara et al.104 reported a mean aqueous
volume of 5.9 μL in 8- to 12-week-old Swiss white mice;
however, this is probably an overestimate because total
ocular volume for mice in this age range is 20 to 25 μL,105

and it is unlikely that AH occupies 25% to 30% of total
mouse globe volume because of the large volume occupied
by the crystalline lens and vitreous body. Nonetheless, by
combining this anterior chamber volume with Cole’s aver-
age turnover rate, the inflow rate is calculated to be 53 to
125 nL/min.

A drawback of the above approaches is that they rely on
extrapolation of data from both rat and mouse, which may
not be valid. Millar et al.106 used an experimental approach
in adult male BALB/cJ mice (30–42 weeks), together with a
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modified Goldmann’s equation, to estimate an inflow rate of
140 nL/min. Aihara and colleagues104 used an in vivo dilu-
tion technique in NIH Swiss White mice (8–12 weeks of age)
to determine an inflow rate of 180 nL/min. Both Toris et
al.107 and Zhang et al.108 used fluorophotometric approaches
modified for the mouse eye to measure inflow rates, and
they obtained flow rates of 90 to 200 nL/min in female CD-
1 mice at least 6 months of age (depending on anesthesia)
and 60 nL/min in C57BL/6 animals 4 to 6 weeks old, respec-
tively. Toris noted that certain anesthetics depressed inflow,
suggesting that these inflow rates may be underestimates,
although this effect may be partially offset by the expecta-
tion that diffusion of fluorescein in the smaller mouse eye
would be greater than in larger eyes, leading to an overesti-
mate of inflow rates.

Despite the challenges of the small mouse eye, there
is some consistency in the above results, with most data
suggesting inflow rates between 60 and 200 nL/min. Some
of this variability is almost certainly due to mouse strain and
age109 and effects of anesthesia. Thus, we recommend avoid-
ing perfusion of mouse eyes at flow rates in excess of these
values.

Further, because of the low flow rates of AH produced by
the ciliary body in mouse eyes, the resolution in flow rate
determination must be better than 10 nL/min for making
outflow measurements. To put this in context, at 10 nL/min,
it takes several days to form just one drop of fluid. Note
that this resolution requirement applies to both pressure-
and flow-controlled approaches; for example, even in a
flow-controlled approach, inaccuracies can be introduced by
miscalibration or intermittency of the pump delivering the
flow.

In addition to accurate measurement of flow, the reso-
lution of pressure measurements should be better than
0.5 mmHg, although higher resolution is recommended.
Further, all system elements (pressure transducer, flow trans-
ducer, and/or syringe pump) must be independently cali-
brated and demonstrate adequate resolution. Validation of a
system can be demonstrated by perfusing glass capillaries
of known diameter and comparing the measured flow resis-
tance (numerical inverse of outflow facility) to the analytical
estimate determined from Poiseuille’s law or by indepen-
dent means. Additionally, due to the sensitivity of the flow
and pressure sensors required, perfusion systems should be
isolated from room air movements and placed on a sturdy
surface (preferably a vibration isolation table) away from
sources of vibration.110 Finally, due to the large surface-
to-volume ratio of mouse eyes, perfusions must be
performed with the eye submerged in a temperature-
controlled bath or in a humidified chamber. Poor mainte-
nance of humidity can lead to significant over- or underesti-
mates of facility.105,111,112 Aqueous gels or repeated saline
drops to the cornea are not necessarily a sufficient solu-
tion, as evaporation of the aqueous phase of gels or drops
can create an osmotically driven flow across the cornea.6 A
potential alternative option would be to place the mouse eye
on the surface of a pool of buffered saline in a humidified
chamber or have saline continually applied to the cornea.108

Evaluation of pressure or flow tracings over a period of
time would ensure that measurements are obtained at steady
state.

Animal Housing. Environmental stresses during the
housing of the living animals (e.g., low humidity, noise)
affects outflow facility measured ex vivo,112 so housing
conditions should be monitored and carefully controlled.

Study Design. To test drug (or other treatment) effects,
paired experiments in which both eyes are perfused simul-
taneously are highly recommended, whenever appropriate,
due to the large inter-animal range in normal outflow facil-
ity observed even in inbred mice.110,112 When this is not
possible, studies should be adequately powered to account
for this variability. The pharmacokinetics and pharmacody-
namics of drug within the eye must be considered care-
fully in such studies. One approach is to unilaterally pretreat
one eye (e.g., using drops) with the drug of interest before
enucleation and facility measurement. However, for drugs
that do not readily cross the cornea, this is not feasible, and
the drug must be directly perfused into the enucleated eye.
The introduction of drug into larger eyes (human, porcine)
is typically accomplished by anterior chamber exchange,113

which requires two needles to be placed into the ante-
rior chamber or some other process for mixing anterior
chamber contents, allowing measurement of both baseline
(pre-drug) and post-drug facilities. Importantly, anterior
chamber exchange allows precise control over the drug
concentration which would otherwise be diluted without
an exchange due to the presence of drug-free fluid within
the anterior chamber. Insertion of two needles in the small
mouse eye is technically challenging but has been demon-
strated114; however, drugs are also often infused with a
single needle. Researchers must be aware that drug intro-
duced into the mouse eye with a single needle will not be
delivered immediately to the TM and, even when it reaches
the TM, will be delivered at a diluted concentration that
changes over time and is less than the infused concentra-
tion. Multiple (more than three) pressures/flow rates are
recommended to establish a pressure–flow relationship from
which outflow facility can be derived. Confounding factors
such as evaporation, temperature, humidity, and vibration or
noise must be considered, controlled, and/or monitored. For
rodent eyes, such considerations are especially critical due
to the small size and low flow rates.

Handling and Cannulation of Eyes. Mouse eyes are
extremely fragile, thus delicate handling is required so that
eyes and fluid contents are not distorted during enucleation
for ex vivo perfusions. Eyes must be dissected out of the eye
socket by cutting the extraocular muscles without damaging
the globe and leaving at least 1 mm of optic nerve, rather
than simply proptosing the eye from the socket and cutting
behind the globe. The latter approach can lead to significant
errors (e.g., traction on the optic nerve that causes unde-
tectable leaks at the optic nerve head or severe deformation
of the ocular contents). Remnants of orbital fat and muscle
tissue should be removed to allow inspection of the sclera
for any damage and ensure that they do not provide resis-
tance to flow.

Cannulation and needle placement are also critical and
are likely the most technically challenging aspects of the
perfusion. For cannulation of the anterior chamber of the
test eye, a finely pulled glass needle (40–100 μm) with a
beveled edge is recommended, but cannulation can also
be achieved with stainless steel needles.61 The cannula-
tion needle should be handled by a micromanipulator
to prevent damage to intraocular structures and should
be visualized under a stereomicroscope to ensure proper
placement (i.e., avoiding contact with the iris and lens).
Orienting the needle perpendicular to the corneal surface
reduces the force required during cannulation and mini-
mizes rotation of the eye. However, this practice results
in the wrong angle of entry into the relatively shallow
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mouse anterior chamber. Holding onto perilimbal conjunc-
tival remnants with a forceps often helps to avoid rotation
of the almost spherical mouse eye. Note that poor enucle-
ation technique can make cannulation significantly more
difficult.

Eye Perfusion. Placing the needle tip in the posterior
chamber (PC) can avoid the problem of anterior cham-
ber (AC) deepening that has been described in human
eyes7,115,116 and also occurs in mice.111,117 In anterior cham-
ber deepening, an adverse pressure gradient is established
across the iris that leads to posterior motion of the lens and
iris. This in turn deforms outflow tissues, leading the outflow
facility to increase as pressure increases.7 However, posterior
chamber cannulation is a risky technique in rodent eyes, as
needle tips are typically larger than the PC, and inserting a
needle often deforms or penetrates the iris and/or contacts
the lens capsule. Thus, most investigators place their needle
tip in the AC. AC deepening is predominantly an issue in
ex vivo and postmortem perfusions where AH inflow is
absent but can also occur in vivo when flow rates from the
perfusion system exceed AH inflow rates.111 It is notewor-
thy that, when accounting for AC deepening in human115,118

and monkey119 eyes, outflow facility typically decreases116

due to collapse of the SC lumen. This collapse also occurs in
mice at a clamped pressure of approximately 20 mmHg,120

meaning that perfusions should be conducted at pressures
or flow rates that are in the physiological range and do not
collapse SC. The effects of AC deepening can be partially
allayed by careful data processing.

To decrease the chance of leaks, the cannulation needle
can be secured to the cornea with epoxy glue. This is some-
times necessary because the mouse cornea will not always
seal the area around the needle, especially if there is any
rotational force (even the eye weight or fluid currents if
maintained in a solution while perfused can sometimes
cause these forces). Leaks are not always obvious, and they
usually manifest as the IOP increases. Cyanoacrylate adhe-
sive (e.g., Krazy Glue) should not be used, as it spreads on
the eye surface, potentially occluding the episcleral vessels.
If used, epoxy glue should be applied under the microscope
and very sparingly around the needle entry site only.

Data Processing, Analysis, and Presentation. Histori-
cally, outflow facility has been assumed to be constant
during a measurement period, with a corresponding linear
flow–pressure relationship. Typically, assumption of a linear
flow–pressure relationship has allowed calculation of facil-
ity as the slope of a flow–pressure graph, with the intercept
ascribed to unconventional outflow or pressure-independent
outflow. However, the flow rate at zero pressure in enucle-
ated eyes is zero, and allowing a free intercept can lead
to several-fold errors in outflow facility.6,121 Unfortunately,
as described above, outflow facility increases with pressure
in mice due to AC deepening, so assumptions of linearity
should be avoided. It is important to note that R2 is a poor
indicator of linearity, as it will inevitably be high for corre-
lated parameters such as pressure and flow. A more rigor-
ous approach is to fit a model that allows for the pressure
dependence of outflow facility and then evaluate whether
the nonlinearity parameter is significantly different from
zero. Repeatable patterns of residuals from a linear fit are
a good way to visualize nonlinearity. Alternatively, linear fits
can be compared with nonlinear ones, and the one with
the highest correlation in individual eyes can be used to
describe the relationship with the specific perfusion setup
used.

FIGURE 2. Histogram of measured facilities (C) in wild-type
C57BL/6J enucleated mouse eyes. The lognormal distribution is
clearly evident. The modal facility value is 3 to 6 nL/min/mmHg.
Inset shows the same data, after log transformation. Reprinted with
permission from Reina-Torres E, Bertrand JA, O’Callaghan J, Sher-
wood JM, Humphries P, Overby DR. Reduced humidity experienced
by mice in vivo coincides with reduced outflow facility measured
ex vivo. Exp Eye Res. 2019;186:107745. © 2019 Elsevier Ltd.

Ex vivo outflow facility in mouse and rat eyes is lognor-
mally distributed when measured using the iPerfusion
system (Fig. 2)110,112,122; that is, the distribution of outflow
facility values within a population will be asymmetric and
skewed toward lower values when plotted on linear axes
(but symmetric when plotted on logarithmic axes. This is a
consequence of the small mean outflow facility measured in
mice, combined with the physical constraint that the facility
must remain positive and depends on several multiplicative
factors. This has three important implications.

1. Individual facility values within a given population
may span a large range relative to the mean facil-
ity value. This should be considered when designing
experiments or performing power calculations.

2. To account for a skewed distribution, facility values
should be log-transformed where appropriate before
carrying out any statistical analyses, as not doing
so may violate the normality assumptions inher-
ent in most statistical tests (e.g., Student’s t-test)
and result in erroneous statistics. For a detailed
discussion of performing hypothesis testing on
outflow facility values using log-normal weighted
statistics, see the Supporting Information 2 document
published in Sherwood et al.110

3. It is not appropriate to use “±” to describe the uncer-
tainty or the spread of facility values within the popu-
lation, as the lower bound will be closer to the mean
than the upper bound due to the asymmetry of the
log-normal distribution. Instead, we recommend using
the lower and upper 95% confidence bounds to report
the geometric mean, and the lower and upper values
of the 2-SD range (calculated in the log domain) to
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report the range that encompasses 95% of the popu-
lation: for example, “average outflow facility was 5.5
(4.1, 7.4) nL/min/mmHg,” and “the 2-SD range was 3.2
to 9.5 nL/min/mmHg.” When estimates of the param-
eters have been processed, statistical analysis must be
carried out to ascertain if the observed results are
statistically significant. This is typically done using
hypothesis testing approaches (e.g., t-test, ANOVA) in
the log-transformed domain.

Unfortunately, despite careful attention to detail, some
perfusions fail due to a variety of reasons, including leaks,
bubbles, or needle blockage. Objective exclusion criteria for
selecting or rejecting perfusions should be clearly estab-
lished before a study is started, and the number of rejected
perfusions should be clearly reported. There are several
possible reasons for exclusion:

1. Quality of the pressure–flow traces. For example, if
the flow versus time plot shows large, unexpected
changes over time, this may indicate a bubble or
partial needle blockage.

2. Extreme (very low or very high) facility values, which
can indicate leaks or needle blockage. After establish-
ing a normative database for an individual perfusion-
ist (Fig. 2), objective outlier detection methods can be
used to remove such eyes.

It is important to establish exclusion criteria ahead of the
analysis to avoid bias. Any decisions about exclusion of indi-
vidual eyes should be performed in a masked fashion (with-
out knowing the experimental group to which these eyes
belong) and prior to any group comparisons.

Data presentation should focus on transparency. Rather
than bar charts, plot formats that display all data points
should be used (e.g., box plots with individual data points
shown, beeswarm plots with a visualization of the descrip-
tive statistics, or cello plots)110 that incorporate these aspects
and visualize the statistical distribution upon which the
statistical tests used are calculated.123 Standard error of the
mean should be avoided; instead, 95% confidence intervals
should be used to describe uncertainty on the mean, with
a 2-SD range to describe the spread in the data. It is also
advisable to include examples of chart recorder tracings in
all publications.

In Vivo Outflow Facility Measurements. Measure-
ment of outflow facility in enucleated mouse eyes as
described in the previous section provides several advan-
tages. These are centered around the concepts that outflow
resistance can be studied in relative isolation, free of the
complicating factors of, and potential perfusion-mediated
changes in, natural aqueous secretion rate, episcleral venous
pressure, tone in the ciliary muscle and iris, innervation to
various structures in the anterior segment, anterior segment
blood supply, and potential endocrine (and anesthesia-
related) effects. However, in vivo perfusions are advanta-
geous if one is interested in determining outflow facility
(and how it may be impacted by various testing paradigms)
in the living animal, which may be qualitatively and quan-
titatively different from the situation seen in isolated eyes
perfused ex vivo, but further research is required to estab-
lish a consensus. The methodology for in vivo outflow
facility measurements, lists of the equipment required to
construct a constant flow infusion system, and schemat-
ics illustrating the assembly of the apparatus have been
provided in detail elsewhere.106,109,124 Many of the same

considerations described for ex vivo perfusions are also rele-
vant to in vivo perfusions. As such, the following sections
focus on issues relevant specifically to in vivo outflow
measurements.

Anesthesia. Systemic anesthesia may125,126 or may
not127,128 affect aqueous outflow facility. Both injectable
cocktails and inhalation anesthesia have been utilized for
in vivo studies. Of the two, the injectable cocktail approach
(using ketamine and xylazine) may be the least likely to
affect outflow facility in mice127; therefore, a mixture of
ketamine (10 mg/mL) and xylazine (1 mg/mL) with a final
dose of 100 mg/kg of ketamine and 10 mg/kg of xylazine is
recommended as previously described.106 As an alternative,
inhalation anesthesia can be utilized.

Cannulation of Eyes. As with cannulation of enucleated
eyes to be perfused ex vivo, cannulation of living mouse eyes
is a critical step that must be carried out with a high degree
of skill. Eyes may be cannulated with needle tips placed in
the AC or in the PC, as illustrated by Lopez et al.117 When
cannulating, one must take care to place the tip of the needle
at the correct starting area, immediately prior to inser-
tion into the globe. For AC cannulation, this is against the
peripheral cornea, 0.25 to 0.75 mm from the limbus. For PC
cannulation, this is against the anterior portion of the sclera
overlying the pars plicata, approximately 0.2 to 0.5 mm from
the limbus. The needle must then be inserted in one rapid
and deft motion, thereby placing the needle tip in the desired
area while simultaneously angling it appropriately so as to
avoid damaging internal structures.117 Needles must also be
mounted in a suitable supporting system such that they will
remain in place without movement or any kind of tractive
force being exerted upon them during the course of the
perfusion, which is virtually impossible (because of animal
breathing) unless using a sophisticated control system.

Following successful cannulation, intracameral pressure
should be adjusted using manometers to equal the eye’s pre-
cannulation but post-anesthesia IOP (as previously deter-
mined by tonometry). In this way, the chambers will be
refilled and the eyes restored as closely as possible to
their pre-cannulation state. Following this, the manometers
should be switched out of the fluid perfusion circuit and the
infusion pumps switched on to pump fluid at a flow rate
within the physiological range.

Lopez et al.117 reported that, in the living mouse eye,
regardless of whether the cannulating needle tip is placed
in the AC or the PC, outflow resistance and hence facil-
ity are relatively independent of perfusion pressure over
the perfusate flow rates of 100 to (maximally) 500 nL/min
(corresponding to mean intracameral pressures of 12 to
28 mmHg). However, if perfusate flow rates are increased
to 600 to 800 nL/min (very much supraphysiological in this
species) then outflow resistance increases sharply. This is
likely a consequence of iridiotrabecular contact or perhaps
progressive collapse of the lumen of SC as flow rates
increase.120

Perfusion. After commencing infusion at a flow rate of
100 nL/min, the animal should be left to equilibrate for 20
to 30 minutes. After equilibration has occurred, the infusion
pump flow rates should then be increased by increments
of 50 nL/min or 100 nL/min, and 10 minutes should be
allowed at each equilibrated flow rate. A final flow rate of
500 nL/min should not be exceeded, for reasons described
above. Following perfusion, the needles should be removed
rapidly from each eye, and a return of the pressure to zero
should be noted to ensure that needle blockage or leakage
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FIGURE 3. Linearity of pressure–flow rate curve in live mice.
(A) C57BL/6J mouse pressure–flow rate curve (N = 6 eyes in situ
in live animals; AC perfusion). Over the flow rate range of 100 to
500 nL/min, corresponding to a mean pressure of 15.58 ± 2.83
to 35.18 ± 4.26 mmHg (mean ± square deviation from the mean
[SDM]), the curve approached linearity: r2 = 0.9891 ± 0.0076 (mean
± SDM); AIC (two-level linear nested design) = 128.2; AIC (three-
level linear nested design) = 130. Computed facility = 19.5 ±
0.8 nL/min/mmHg (mean ± SEM). (B) C57BL/6J mouse pressure–
flow rate curve (N = 6 eyes in situ in live animals; PC perfusion).
Over the flow rate range of 100 to 500 nL/min, corresponding to
a mean pressure of 13.36 ± 2.77 to 33.21 ± 5.57 mmHg (mean
± SDM), the curve approached linearity: r2 = 0.9882 ± 0.0032
(mean ± SDM); AIC (two-level linear nested design) = 156.2; AIC
(three-level linear nested design) = 155.9. Computed facility = 21.0
± 2.1 nL/min/mmHg (mean ± SEM). Reprinted with permission
from Lopez NN, Patel GC, Raychaudhuri U, et al. Anterior chamber
perfusion versus posterior chamber perfusion does not influence
measurement of aqueous outflow facility in living mice by constant
flow infusion. Exp Eye Res. 2017;164:95–108. © 2017 Elsevier Ltd.

has not occurred. Data should be discarded from all eyes in
which such a blockage has occurred.

StudyDesign. Intra-animal variation in facility (OD vs.OS
as measured in naïve animals) is statistically insignificant in
non-diseased normal animals.106,109 For this reason, where
appropriate, paired study designs can be used where one
eye is subjected to treatment and the contralateral eye serves
as a control.

Data Recording and Processing. For transparency of data
expression, as with enucleated eyes perfused ex vivo, each
individual data point should be shown, in the form of a scat-
terplot, and 95% confidence intervals should be indicated,
along with one or two standard deviations from the mean.

Examples of chart recorder tracings should be included in
all publications. The data typically approximate a linear fit;
thus, a linear regression line may be calculated. To test for
approximation to linearity, the Akaike information criteria
(AIC) or other appropriate test should be used117 (Fig. 3). If
the data points at a greater than 400-nL/min flow rate do not
follow the linear trend but instead indicate a sudden sharp
increase in outflow resistance (as evidenced by higher than
expected pressures), then these points can be eliminated
from the analysis, as they are likely indicative of collapse of
the lumen of SC at these relatively (and unphysiologically)
high flow rates. When SC collapses, accurate measurements
of outflow facility are compromised, and only preceding data
points can be used for analysis.

Enucleated mouse eyes perfused ex vivo may exhibit an
asymmetric distribution in individual facility values—that is,
a lognormal distribution (due to the nature multiplicative
nature of facility skewed toward lower values). However, no
evidence for this in eyes perfused in situ in the live animal
has been found,106,109 and data reported are not statistically
significant from a normal distribution, such as Anderson–
Darling, Kolmogorov–Smirnov, Ryan–Joiner (Minitab), or
Shapiro–Wilk (SigmaPlot). Parametric statistical tests (such
as Student’s t-test, following a test of variance where two
groups are compared, or analysis of variance where multiple
groups are compared) for data analysis have been reported
in live animal facility measurements, without the need for
log transformation.

Data Exclusion Criteria. Measurement of facility in living
mice is difficult and demands a great deal of care, patience,
and practice. A proportion of eyes will fail for reasons such
as leakage, reduction of the lumen of SC sometimes seen
at lower flow rates, bleeding into the anterior chamber, or
blockage of the perfusion needle. Each of these events can
be identified by examination of the flow rate versus pres-
sure graphs or after withdrawal of the needles from the
eyes at the conclusion of the perfusion. Data from these
eyes must be excluded. Insertion of needles into the eyes
of living animals may also lead to significant breakdown
of the blood–aqueous barrier, with concomitant produc-
tion of plasmoid (or secondary) AH.129,130 However, with
care, practice, and perseverance, it is possible to obtain
reasonable and reproducible estimates of facility, which can
show reproducible drug- or gene-induced changes in the
animal.

Summary of Recommendations

• Outflow facility must be characterized when a
new model of OHT is introduced if it is claimed
that the model has a phenotype affecting the
conventional outflow pathway. If outflow has not
been measured in the model, it should be explic-
itly stated that the location of dysfunction that
mediates the OHT is unknown and that any
conclusions based on the assumption of a facil-
ity phenotype are therefore speculative.

• When testing the effects of agents (e.g., drugs,
viruses) on outflow facility, paired experiments
are strongly encouraged whenever feasible, with
both eyes perfused simultaneously at pressures
or flow rates in the physiological range.
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• When analyzing facility data, normality should be
checked. When data are found to be statistically
different from a normal distribution, outflow facil-
ity values should be suitably transformed (e.g.,
log-transformed) and rechecked for normality
before statistical analyses are carried out. Alterna-
tively, non-parametric statistics could be applied.

• The linearity (or nonlinearity) of the flow–
pressure relationship should be quantified; that
is, the potential for pressure dependence of
outflow facility must be considered. If flow–
pressure plots are linear, facility can be deter-
mined by the slope of the linear fit of flow on
pressure only if the intercept is physiologically
meaningful. If they are nonlinear, an appropriate
model (e.g., power law) should be used to fit the
data.

• Publications that present perfusion data are
strongly encouraged to include the following
information as appropriate:
◦ Details on age, strain, and sex of the mice,

along with any special diet or housing or
husbandry conditions, per Animal Research:
Reporting In Vivo Experiments (ARRIVE)
guidelines131

◦ For ex vivo perfusion studies, details of
enucleation technique, postmortem and post-
enucleation times, and storage conditions of
the eye prior to perfusion

◦ For in vivo perfusion studies, details of anes-
thetic used (i.e., name, dosage, frequency)

◦ Representative calibration data (for flow and
pressure sensors and, if possible, for a “model
eye”), as supplemental material

• All animals being compared should be treated
and housed under similar conditions; for exam-
ple, potential confounding factors could include
differences in evaporation, temperature, humid-
ity, and vibration/noise.

• All data points should be shown using suitable
plot formats with inclusion and exclusion data
criteria specifically described in methods, along
with a statement on the number of rejected
cases. Mean facility and lower and upper 95%
confidence bounds should be determined and
reported.

Histological Examination

The anatomy and physiology of the conventional outflow
pathway of mice have considerable similarity to that of
humans. Like in the human eye, the mouse outflow tract
consists of TM, JCT, SC, collector channels, and episcle-
ral veins.34 However, there are some distinct differences
between the two species. In the human eye, the TM is a
porous and lamellated structure consisting of nine to 18
trabecular beams.133 Each beam has a fibrillar ECM core
consisting of collagenous and elastic fibers. The core is
covered by a single continuous layer of flat TM cells that rest
on a complete basal lamina.132–135 The TM elastic fibers have
a core consisting of elastin that is surrounded by a sheath
that contains collagen type VI. The JCT is a loose connec-
tive tissue in which mesenchymal cells are surrounded by

the ECM. Characteristic is a layer of elastic fibers (cribri-
form plexus) forming a fibrous network that stretches under-
neath the endothelial lining of SC. The elastic fibers of the
plexus show the same structural characteristics as those in
the trabecular beams. Connecting fibrils emerge from the
cribriform plexus and form cell matrix contacts with the
inner wall endothelium of SC.132,136 Endothelial cells of the
SC inner wall rest on an incomplete basal lamina (consist-
ing of a lamina rara and densa); considerable areas of their
basal cell membrane are not supported by ECM but rather
are in direct contact with the open spaces of the JCT.136 In
the mouse eye, there are two to five layers of TM lamel-
lae.34,137 As in the human TM, the lamellae contain elastic
fibers that are posteriorly in contact with several longitudi-
nally oriented smooth muscle cells which form the mouse
ciliary muscle.36 The TM elastic fibers are not surrounded
by a well-defined sheath as in the human eye. A scleral
spur like in the human eye is absent. The mouse JCT is
usually 1 to 2 μm wide and contains only very sparse fibril-
lar extracellular matrix, mostly in the form of fine fibrillar
material.53,57,79,137,138 Most of the fibers in this material have
a diameter of about 6 to 10 nm. The fibrils form typical cell-
matrix contacts with SC cells. In addition, 40-nm fibers with
the typical striation of collagen are observed. All types of
fibers are more numerous in the posterior parts of the TM.
A well-structured elastic fiber plexus that connects with the
SC, as in the human JCT, is absent in the mouse eye. Some
authors refer to the fine fibrillar material in the mouse JCT
as “basement membrane,” a term that is appropriate as long
as it is not confused with the term “basal lamina.” SC cells in
the mouse eye appear not to be supported by a basal lamina
(neither complete nor incomplete). Still, immunohistochemi-
cal data show patchy and discontinuous staining for collagen
type IV, which is a typical basal lamina component.57

For an overall assessment of mouse ocular structures,
light microscopy following hematoxylin and eosin staining
of paraffin or plastic sections is a reliable method. In this
approach, eyes are either immersion or perfusion fixed by
appropriate fixative prior to being processed and embedded.
Still, immersion fixation without opening the eye results in
poor fixation of the inner eye. On the other hand, when the
eye is opened before immersion fixation, the anterior cham-
ber tends to collapse, a scenario that makes it difficult to
judge if the chamber angle is open and/or to exclude that
anterior synechiae are present. To avoid this problem while
obtaining structural preservation that is appropriate for
light microscopical investigation, eyes may be opened after
30 minutes in fixative with a little cut penetrating the cornea.
This time allows for hardening of the cornea/sclera and
minimizes the problem of generating artifacts by mechanical
distortion while cutting the cornea. While cutting and after it
is very important to keep the eye submerged in the fixative
to avoid air entering the eye via the cut. Any air bubbles in
the eye will invariably lead to poor fixation results. Perfu-
sion fixation has the distinct advantage over immersion in
that it will much better preserve the geometry of the ante-
rior chamber and outflow pathways. For paraffin or plastic
embedded tissue, sections are cut and placed on charged
glass slides to facilitate the tissue remaining on the slide
throughout the staining process. Both procedures provide
adequate morphological assessment, although the ability to
use semi-thin plastic sections will enable analysis of finer
details, as shown in Figure 4.36 Paraffin sections are usually
considerably thicker than plastic sections (5–12 μm vs.
1–3 μm, depending on the respective laboratory), have lower
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FIGURE 4. Examples of appropriate histological examination of
the outflow pathway. (A, B) Semithin sections (Richardson’s stain)
through the iridocorneal angle of representative control and Cav-
1 knockout (KO) eyes. The chamber angle is open in control and
Cav-1 KO eyes, and obvious abnormalities of the CB, TM, and
SC are absent. (C, D) Ultrastructural changes in the JCT region
of mice treated with or without dexamethasone (DEX) for 3 to
4 weeks. (C) In sham-treated control mice without DEX, optically
open spaces (stars) were often observed between JCT cells with
processes extending in many directions. (D) In DEX-treated mice,
the JCT was often filled with fine fibrillar material (arrows), and the
JCT cells appeared elongated. TL, trabecular lamellae. A and B are
reprinted from Elliott MH, Ashpole NE, Gu X, et al. Caveolin-1 modu-
lates intraocular pressure: implications for caveolae mechanopro-
tection in glaucoma. Sci Rep. 2016;6:37127. C and D are reprinted
with permission from Overby DR, Bertrand J, Tektas OY, et al. Ultra-
structural changes associated with dexamethasone-induced ocular
hypertension in mice. Invest Ophthalmol Vis Sci. 2014;55:4922–4933.
© 2014 Association for Research in Vision and Ophthalmology.

resolution, and are likely to shrink or be squeezed. There-
fore, great care needs to be taken to be appropriate for TM
analysis. At a minimum, sections from at least two or three
different locations from three different animals should be
analyzed.

Although light microscopy can provide a general
morphological assessment of the entire outflow pathway, it
does not allow intricate detection of the ECM and analysis of
cell ultrastructure. It is therefore recommended that electron
microscopy studies be performed to assess the ultrastructure
of the conventional outflow pathway, as shown in Figure 4.
Several studies have clearly demonstrated these techniques
and described the methodology in detail.34,57,79–82 In short,
mouse anterior segments should be embedded in plastic
resin and sections cut through iridocorneal tissues using
an ultramicrotome, followed by staining of the section with
uranyl acetate/lead citrate. If possible, ultrastructural analy-
sis should be done in a masked manner. The analysis will
enable a masked observer to examine, for example, subcel-
lular details of the JCT and TM, the presence of fine fibrillar
material or open spaces between in the TM or JCT, the thick-
ness of fine fibrillar material surrounding elastin fibers, and
the amounts and nature of basement membrane material.
To quantify any changes in the amounts of fibrillar ECM,
fractions of JCT and/or SC inner wall length exhibiting ECM
should be measured. For specific structures, magnification
should be high enough to be able to distinguish the struc-

ture of interest, such as cell organelles (endoplasmic reticu-
lum and mitochondria),139 20-μm tracer distribution,82 and
basement membrane of the inner wall of SC.57 A good
example is a study in which mouse eyes were studied
that had been treated with dexamethasone, resulting in
a considerable increase in fibrillar ECM in the JCT.57 To
quantify the changes in basement membrane material, frac-
tions of SC inner wall length exhibiting continuous base-
ment membrane material should be measured in contigu-
ous sagittal sections spanning the entire anterior-to-posterior
length of SC.57 The length of each continuous portion of
basement membrane is summed to calculate the total base-
ment membrane length for that section, and the total base-
ment membrane length is divided by the total inner wall
length for that section computed. A comparable protocol
should be used when studying JCT ECM, albeit the specific
nature of ECM changes may require adjustments of the
protocol. Because there are clear differences in the areas of
the outflow tract (i.e., high flow vs. low flow regions)82 an
analysis of the statistical power is strongly recommended.
Several sections from each quadrant from at least three
different animals are necessary. In addition, when looking
for drug-induced changes, the perfusion of tracer prior to
fixation may be very helpful to examine high- versus low-
flow regions. Scale bars should be included for all images.

Summary of Recommendations for Histological
Examinations

• Assessment of the iridocorneal angle should be
possible and preferred when a new model is eval-
uated.

• Stained paraffin or semi-thin plastic sections are
acceptable if of good quality to assess the general
morphology of the angle structures and the
conventional outflow pathway.

• Electron microscopy is necessary to analyze ultra-
structure of the conventional outflow pathway.

General Recommendations for Proper Mouse
Handling and Experimental Design

Nomenclature: Proper Strain and Mutation
Descriptions for Mice. It is important and essential to
rigorously maintain and report mouse strain information
to improve reproducibility. Laboratory mice originate from
a variety of sources. Most mice have contributions from
both Mus musculus musculus and Mus musculus domesti-
cus. Therefore, mice should not be referred to by species
name but by their specific nomenclature. Inbred strains that
are produced in the lab have defined backgrounds and thus
require nomenclature conventions.

A parental inbred strain will have a designation made
up of uppercase, Roman letters or a combination of letters
and numbers (e.g., C57BL, DBA, 129) followed by a forward
slash and a Laboratory Registration Code of the institu-
tion that maintains the strain. In addition, substrains will
have the substrain symbol and Laboratory Registration Code;
for example, in C57BL/6J, the J stands for The Jackson
Laboratory, or JAX. The most commonly used strains have
standard abbreviations (e.g., C57BL/6J = B6, 129S1/SvlmJ =
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129S). Hybrid strains of the first generation (F1) are named
with female parent listed first followed by male parent (e.g.,
B6129SF1/J derived from a B6 female mated to a 129S male).

For mutant alleles, the unique identifiers include genetic
background, relevant gene/allele name, technology used to
generate the mouse (targeted mutation or “tm,” transgenes
or “Tg,” induced and spontaneous mutations), the research
group that generated the mouse, and the institution main-
taining the strain. An example of nomenclature for a targeted
mutation, flox, or knockout is B6.129P-Tcrbtm1Mom/J, where
Tcrb is the gene, tm1 is the targeted mutation, and Mom is
creator lab code. An example of transgene nomenclature is
B6; Cg-Tg(PDGF-APP)5Lms/J, where Cg stands for congenic,
Tg for transgenic, and PDGF-APP is promoter gene, founder
line, creator lab code. More detailed description of mouse
nomenclature can be found at the following websites (accu-
rate at the time of publication):

1. Mouse Genome Informatics (MGI) guidelines for
nomenclature of genes, genetic markers, alleles, and
mutations in mouse and rat (http://www.informatics.
jax.org/mgihome/nomen/gene.shtml#gkomp)

2. Top seven tips for understanding mouse nomenclature
(https://www.jax.org/news-and-insights/jax-blog/
2013/august/top-seven-tips-for-understanding-mou-
se-nomenclature)

Genetic Factors. A key factor in the success of an
experiment is a well-managed mouse colony, which is crit-
ical for maintaining genetic stability and reproducibility.
Some general tips for good colony management include the
following: (1) A well-defined breeding rotation and mating
scheme should be in place so that one can avoid selecting
extreme phenotypes (mild or strong). (2) A diligent record of
pedigree should be kept so that any phenotypic deviants can
be removed. (3) Genetic backgrounds should be refreshed
regularly by backcrossing mice every five to 10 generations
to the appropriate strain. (4) Cryopreserve unique strains
so mice with the original genotype and phenotype can be
recovered.

Understanding the influence of a genetic background
on experimental outcomes is critical to interpreting experi-
mental results. When the genetic mutation is the only vari-
able, equal numbers of male and female age-matched litter-
mates of each genotype (wild-type, homozygous mutant, and
heterozygous) should be used. In genetic studies, control
littermates are typically available. In the event that they are
not, controls of ideally the same background strain (and
raised under similar conditions) may be used. However,
it must be remembered that when a mutation is crossed
from one strain to another then genes closely linked to the
mutation and that differ between the strains can confound
interpretations and be systematically different between wild-
type and mutant littermates.38 This is less of an issue after
backcrossing, as the linked interval will decrease in size.
Nevertheless, the possible impact of linked genes should
be considered. Given that IOP can vary broadly between
strains,85 a clear understanding of the range of IOP values
and also outflow facility within the base strain of any genetic
background is critical for the interpretation of the experi-
mental data from mutant mice of the same background.

Environmental Factors and Housing Conditions.
Mice should be group housed and the cages changed at least
once weekly. If any cage appears soiled between sched-
uled changes, the mice should be placed in a clean cage.

When possible, mice should be acclimated to the procedure
room for at least 1 week prior to measurement (i.e., for IOP
measurement practice). Mice are generally maintained on a
14-hour light/10-hour dark cycle or 12-hour light/12-hour
dark cycle. It is critical that researchers and technicians do
not enter the mouse room or turn on lights during the dark
cycle. The mice are generally maintained at temperatures of
65°F to 75°F (∼18°C–23°C) at 40% to 60% humidity. A consis-
tent diet, with fat content typically ranging from 4% to 11%,
should be fed, and water should be accessible at all times.

Mice should be handled gently and as little as possible,
especially when females are pregnant or have new litters. It
is critical to minimize noise and vibration, as these can cause
stress, reduce breeding performance, and affect physiologic
parameters such as IOP. Perfumes and other strong odors
that could reduce breeding performance and induce stress
should be reduced. Using gloves and forceps can minimize
scent cues. Enrichment using Nestlets (Animal Specialties
and Provision, Quakertown, PA, USA), NestPaks (W.F. Fisher
and Son, Branchburg, NJ, USA), and Shepherd Shacks (Shep-
herd Specialty Papers, Richland, MI, USA) can help alleviate
stress and improve breeding for some strains.

Powering a Mouse Study. The variability of the
outcome measures in both control and experimental groups
will dictate the numbers of mice needed. Several pieces
of information are required for sample size calculations,
including (1) difference in the respective outcome measures
between groups to be detected (or frequency of the outcome
for each genotype/treatment arm); (2) variation in the
outcome for each group (these may be different); and
(3) how many follow-up time points will be included. Many
of these inputs are from pilot studies followed by rigorous
statistical analysis (P value, effect size, and power) or from
the literature. If one has not found significance based on a
priori sample size calculations, then the initial inputs to the
power calculation can be revisited. Was there more variation
than expected? Is the difference observed clinically mean-
ingful? Additionally, some mice may become ill, may die, or
may be lost to equipment failures before completing a study.
Therefore, it is wise to include a few extra mice in each study
cohort beyond the calculated sample size from a pilot study
and power analysis. Adding mice to an experiment that is not
demonstrating meaningful differences is unlikely to achieve
a robust outcome. Finally, the reality of intrastrain variation
should not be overlooked.140 Wild-type mice of the same
strain may be used as controls for experiments, and if these
mice are not littermates then intrastrain variation resulting
from genetic drift may influence outcomes, as can cage and
litter effects. Responsible reporting of methods in publica-
tions is critical for reproducibility in mouse research. Key
details that should be included in publications are descrip-
tions of mouse age, sex, and number; complete nomen-
clature; housing conditions; and appropriate statistical
analyses.

Overall Summary

• Models should meet the minimum standards for
OHT or outflow facility phenotypes as listed in
each section above.

• Selection of a glaucoma mouse model depends
on the hypothesis to be tested.

• All models have specific advantages and limita-
tions.
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• Animal handling has a direct impact on outcomes.
• Be aware of mouse strain differences.
• Available genetic and phenotyping tools make the
mouse a powerful model.

• Use caution when generalizing mouse results to
human glaucoma.
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