724 research outputs found

    Unveiling a New High-Temperature Ordered Magnetic Phase in Ï”-Fe2O3

    Get PDF
    Iron oxides are among the most abundant materials on Earth, and yet there are some of their basic properties which are still not well-established. Here, we present temperature-dependent magnetic, X-ray, and neutron diffraction measurements refuting the current belief that the magnetic ordering temperature of Ï”-FeO is ∌500 K, i.e., well below that of other iron oxides such as hematite, magnetite, or maghemite. Upon heating from room temperature, the Ï”-FeO nanoparticles' saturation magnetization undergoes a monotonic decrease while the coercivity and remanence sharply drop, virtually vanishing around ∌500 K. However, above that temperature the hysteresis loops present a nonlinear response with finite coercivity, making evident signs of ferrimagnetic order up to temperatures as high as 850 K (T). The neutron diffraction study confirms the presence of ferrimagnetic order well above 500 K with Pna'2' magnetic symmetry, but only involving two of the four Fe sublattices which are ordered below T ≈ 480 K, and with a reduced net ferromagnetic component, that vanishes at above 850 K. The results unambiguously show the presence of a high-temperature magnetic phase in Ï”-FeO with a critical temperature of T ∌ 850 K. Importantly, this temperature is similar to the Curie point in other iron oxides, indicating comparable magnetic coupling strengths. The presence of diverse magnetic phases is further supported by the nonmonotonic evolution of the thermal expansion. The existence of a high-temperature ferrimagnetic phase in Ï”-FeO may open the door to further expand the working range of this multifunctional iron oxide

    Ordering kinetics evaluation of FeAl powders

    Get PDF
    In this study, time resolved X-ray diffraction experiments using synchrotron X-ray radiation have been performed to get insight on the time and temperature dependent atomic ordering of an intermetallic Fe-40Al (at.%) ball-milled powder. The target of the present study is to gain knowledge on the rapid heating processes occurring during Thermal Spray coating processes. Present results show that in the temperature range 400 °C - 550 °C, the evolution of the order can be followed and modelled by fitting the powder diffraction patterns collected within the first minutes after fast heating. Reasonable refinements have been obtained by assuming the presence of two domains corresponding to the ordered and disordered lattices. The lattice constant changes from 0.29165 nm in the ball-milled powder at room temperature to 0.29281 nm in the ordered phase after 3000 s at 550 °C. The growth of the ordered phase is proposed to be a vacancy-related process with an activation energy of 1.04 eV. Above 550 °C, the ordering kinetics appears too fast to be resolved using the few seconds time scale of the present experiments which is in agreement to thermal spray results conditions.Peer ReviewedPostprint (author's final draft

    Neutron diffraction, magnetization and ESR studies of pseudocubic Nd(0.75)Ba(0.25)MnO3 and its unusual critical behavior above Tc

    Full text link
    Results of structural neutron diffraction study, magnetization and ESR measure-ments are presented for insulating Nd0.75Ba0.25MnO3, Tc = 129 K. The crystal structure is refined in the range 4.2-300 K. The compound is found to exhibit the Jahn-Teller (JT) transition at 250 K. The field cooled (FC) magnetization data are in a reasonable agreement with the predictions for a 3D isotropic ferromagnet above Tc. However, these measurements reveal a difference between the FC and zero FC data in the paramagnetic region. ESR results are also in a correspondence with behavior of a cubic ferromagnet above T* = 143 K. It is shown that an anisotropic exchange coupling of the Mn and Nd magnetic moments can give a substantial contribution in ESR linewidth masking its critical enhan-cement. The different temperature treatments of the sample reveal a temperature hysteresis of the ESR spectra below T* indicating an anomalous response in the paramagnetic region. The study of phase transition in this manganite suggests change in its character from the second to first order at T*. The conventional free energy including the magnetization and magnetic field is not found to describe the first order transition. This suggests that the charge, orbital and JT phonon degrees of freedom, in addition to magnetization, may be the critical variables, the unusual character of the transition being determined by their coupling. Unconventional critical behavior is attributed to orbital liquid metallic phase that coexists with the initial orbital ordered phase below T*.Comment: 18 pages, 5 figures, submitted to Phys. Rev.

    Ordering kinetics evaluation of FeAl powders

    Get PDF
    In this study, time resolved X-ray diffraction experiments using synchrotron X-ray radiation have been performed to get insight on the time and temperature dependent atomic ordering of an intermetallic Fe-40A1 (at.%) ball-milled powder. The target of the present study is to gain knowledge on the rapid heating processes occurring during Thermal Spray coating processes. Present results show that in the temperature range 400 degrees C - 550 degrees C, the evolution of the order can be followed and modelled by fitting the powder diffraction patterns collected within the first minutes after fast heating. Reasonable refinements have been obtained by assuming the presence of two domains corresponding to the ordered and disordered lattices. The lattice constant changes from 0.29165 nm in the ball-milled powder at room temperature to 0.29281 nm in the ordered phase after 3000 s at 550 degrees C. The growth of the ordered phase is proposed to be a vacancy-related process with an activation energy of 1.04 eV. Above 550 degrees C, the ordering kinetics appears too fast to be resolved using the few seconds time scale of the present experiments which is in agreement to thermal spray results conditions

    New insights into the breathing phenomenon in ZIF-4

    Get PDF
    Structural changes in ZIFs upon adsorption remain a paradigm due to the sensitivity of the adsorption mechanism to the nature of the organic ligands and gas probe molecules. Synchrotron X-ray diffraction under operando conditions clearly demonstrates for the first time that ZIF-4 exhibits a structural reorientation from a narrow-pore (np) to a new expanded-pore (ep) structure upon N2 adsorption, while it does not do so for CO2 adsorption. The existence of an expanded-pore structure of ZIF-4 has also been predicted by molecular simulations. In simulations the expanded structure was stabilized by entropy at high temperatures and by strong adsorption of N2 at low temperatures. These results are in perfect agreement with manometric adsorption measurements for N2 at 77 K that show the threshold pressure for breathing at ∌30 kPa. Inelastic neutron scattering (INS) measurements show that CO2 is also able to promote structural changes but, in this specific case, only at cryogenic temperatures (5 K).The authors would like to acknowledge financial support from the MINECO (MAT2016-80285-p), Generalitat Valenciana (PROMETEOII/2014/004), H2020 (MSCA-RISE-2016/NanoMed Project), Spanish ALBA synchrotron (Projects AV-2017021985 and IH-2018012591) and Oak Ridge beam time availability (Project IPTS-20843.1). JSA and JGL acknowledge financial support from UA (ACIE17-15) to cover all the expenses for INS measurements at Oak Ridge. JGL acknowledges GV (GRISOLIAP/2016/089) for the research contract

    A different look at the spin state of Co3+^{3+} ions in CoO5_{5} pyramidal coordination

    Full text link
    Using soft-x-ray absorption spectroscopy at the Co-L2,3L_{2,3} and O-KK edges, we demonstrate that the Co3+^{3+} ions with the CoO5_{5} pyramidal coordination in the layered Sr2_2CoO3_3Cl compound are unambiguously in the high spin state. Our result questions the reliability of the spin state assignments made so far for the recently synthesized layered cobalt perovskites, and calls for a re-examination of the modeling for the complex and fascinating properties of these new materials.Comment: 5 pages 3 figure

    Muon excess at sea level from solar flares in association with the Fermi GBM spacecraft detector

    Get PDF
    This paper presents results of an ongoing survey on the associations between muon excesses at ground level registered by the Tupi telescopes and transient solar events, two solar flares whose gamma-ray and X-ray emissions were reported by, respectively, the Fermi GBM and the GOES 14. We show that solar flares of small scale, those with prompt X-ray emission classified by GOES as C-Class (power 10−610^{-6} to 10−510^{-5} W m2^2 at 1 AU) may give rise to muon excess probably associated with solar protons and ions emitted by the flare and arriving at the Earth as a coherent particle pulse. The Tupi telescopes are within the central region of the South Atlantic Anomaly (SAA), which allows particle detectors to achieve a low rigidity of response to primary and secondary charged particles (≄0.1\geq 0.1 GV). Here we argue for the possibility of a "scale-free" energy distribution of particles accelerated by solar flares. Large and small scale flares have the same energy spectrum up to energies exceeding the pion production, the difference between them is only the intensity. If this hypothesis is correct, the Tupi telescope is registering muons produced by protons (ions) whose energy corresponds to the tail of the spectrum. Consequently the energy distribution of the emitted protons has to be a power law spectrum, since power law distributions are characterized as scale free distributions. The Tupi events give support to this conjecture.Comment: 24 pages, 10 figure

    Latitudinal Variance in the Drivers and Pacing of Warmth During Mid-Pleistocene MIS 31 in the Antarctic Zone of the Southern Ocean

    Get PDF
    Early Pleistocene Marine Isotope Stage (MIS)-31 (1.081–1.062 Ma) is a unique interval of extreme global warming, including evidence of a West Antarctic Ice Sheet (WAIS) collapse. Here we present a new 1,000-year resolution, spanning 1.110–1.030 Ma, diatom-based reconstruction of primary productivity, relative sea surface temperature changes, sea-ice proximity/open ocean conditions and diatom species absolute abundances during MIS-31, from the Scotia Sea (59°S) using deep-sea sediments collected during International Ocean Discovery Program (IODP) Expedition 382. The lower Jaramillo magnetic reversal (base of C1r.1n, 1.071 Ma) provides a robust and independent time-stratigraphic marker to correlate records from other drill cores in the Antarctic Zone of the Southern Ocean (AZSO). An increase in open ocean species Fragilariopsis kerguelensis in early MIS-31 at 53°S (Ocean Drilling Program Site 1,094) correlates with increased obliquity forcing, whereas at 59°S (IODP Site U1537; this study) three progressively increasing, successive peaks in the relative abundance of F. kerguelensis correlate with Southern Hemisphere-phased precession pacing. These observations reveal a complex pattern of ocean temperature change and sustained sea surface temperature increase lasting longer than a precession cycle within the Atlantic sector of the AZSO. Timing of an inferred WAIS collapse is consistent with delayed warmth (possibly driven by sea-ice dynamics) in the southern AZSO, supporting models that indicate WAIS sensitivity to local sub-ice shelf melting. Anthropogenically enhanced impingement of relatively warm water beneath the ice shelves today highlights the importance of understanding dynamic responses of the WAIS during MIS-31, a warmer than Holocene interglacial.Postprin

    Increasing the bandwidth of resonant gravitational antennas: The case of Explorer

    Full text link
    Resonant gravitational wave detectors with an observation bandwidth of tens of hertz are a reality: the antenna Explorer, operated at CERN by the ROG collaboration, has been upgraded with a new read-out. In this new configuration, it exhibits an unprecedented useful bandwidth: in over 55 Hz about its frequency of operation of 919 Hz the spectral sensitivity is better than 10^{-20} /sqrt(Hz) . We describe the detector and its sensitivity and discuss the foreseable upgrades to even larger bandwidths.Comment: 4 pages- 4 figures Acceted for publication on Physical Review Letter

    Ancient marine sediment DNA reveals diatom transition in Antarctica

    Get PDF
    Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We ïŹnd evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to openocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.Postprin
    • 

    corecore