105 research outputs found
Philippe Zittoun: la fabrique des politiques publiques
La fabrique des politiques propose une réflexion à la fois érudite, novatrice et controversée dans le champ de l'analyse des politiques publiques, soit trois bonnes raisons pour lire cet ouvrage et pour imaginer, peut-être, les prémices d'un tournant narratif en science politique
Hypoxia-inducible factor 1 alpha-mediated RelB/APOBEC3B down-regulation allows hepatitis B virus persistence
Background and Aims: Therapeutic strategies against HBV focus, among others, on the activation of the immune system to enable the infected host to eliminate HBV. Hypoxia‐inducible factor 1 alpha (HIF1α) stabilization has been associated with impaired immune responses. HBV pathogenesis triggers chronic hepatitis‐related scaring, leading inter alia to modulation of liver oxygenation and transient immune activation, both factors playing a role in HIF1α stabilization.
Approach and Results: We addressed whether HIF1α interferes with immune‐mediated induction of the cytidine deaminase, apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B; A3B), and subsequent covalently closed circular DNA (cccDNA) decay. Liver biopsies of chronic HBV (CHB) patients were analyzed by immunohistochemistry and in situ hybridization. The effect of HIF1α induction/stabilization on differentiated HepaRG or mice ± HBV ± LTβR‐agonist (BS1) was assessed in vitro and in vivo. Induction of A3B and subsequent effects were analyzed by RT‐qPCR, immunoblotting, chromatin immunoprecipitation, immunocytochemistry, and mass spectrometry. Analyzing CHB highlighted that areas with high HIF1α levels and low A3B expression correlated with high HBcAg, potentially representing a reservoir for HBV survival in immune‐active patients. In vitro, HIF1α stabilization strongly impaired A3B expression and anti‐HBV effect. Interestingly, HIF1α knockdown was sufficient to rescue the inhibition of A3B up‐regulation and ‐mediated antiviral effects, whereas HIF2α knockdown had no effect. HIF1α stabilization decreased the level of v‐rel reticuloendotheliosis viral oncogene homolog B protein, but not its mRNA, which was confirmed in vivo. Noteworthy, this function of HIF1α was independent of its partner, aryl hydrocarbon receptor nuclear translocator.
Conclusions: In conclusion, inhibiting HIF1α expression or stabilization represents an anti‐HBV strategy in the context of immune‐mediated A3B induction. High HIF1α, mediated by hypoxia or inflammation, offers a reservoir for HBV survival in vivo and should be considered as a restricting factor in the development of immune therapies
Differential induction of nuclear factor-like 2 signature genes with toll-like receptors stimulation
Inflammation is associated with production of reactive oxygen species (ROS) and results in the induction of thioredoxin (TXN) and peroxiredoxins (PRDXs) and activation of nuclear factor-like 2 (Nrf2). In this study we have used the mouse RAW 264.7 macrophage and the human THP-1 monocyte cell line to investigate the pattern of expression of three Nrf2 target genes, PRDX1, TXN reductase (TXNRD1) and heme oxygenase (HMOX1), by activation of different Toll-like receptors (TLR). We found that, while the TLR4 agonist lipopolysaccharide (LPS) induces all three genes, the pattern of induction with agonists for TLR1/2, TLR3, TLR2/6 and TLR7/8 differs depending on the gene and the cell line. In all cases, the extent of induction was HMOX1>TXNRD1>PRDX1. Since LPS was a good inducer of all genes in both cell lines, we studied the mechanisms mediating LPS induction of the three genes using mouse RAW 264.7 cells. To assess the role of ROS we used the antioxidant N-acetylcysteine (NAC). Only LPS induction of HMOX1 was inhibited by NAC while that of TXNRD1 and PRDX1 was unaffected. These three genes were also induced by phorbol myristate acetate (PMA), a ROS-inducer acting by activation of protein kinase C (PKC). The protein kinase inhibitor staurosporine inhibited the induction of all three genes by PMA but only that of HMOX1 by LPS. This indicates that activation of these genes by inflammatory agents is regulated by different mechanisms involving either ROS or protein kinases, or both
Molecular characterization of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis
Background and aims: Non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) is increasing globally, but its molecular features are not well defined. We aimed to identify unique molecular traits characterising NASH-HCC compared to other HCC aetiologies. Methods: We collected 80 NASH-HCC and 125 NASH samples from 5 institutions. Expression array (n = 53 NASH-HCC; n = 74 NASH) and whole exome sequencing (n = 52 NASH-HCC) data were compared to HCCs of other aetiologies (n = 184). Three NASH-HCC mouse models were analysed by RNA-seq/expression-array (n = 20). Activin A receptor type 2A (ACVR2A) was silenced in HCC cells and proliferation assessed by colorimetric and colony formation assays. Results: Mutational profiling of NASH-HCC tumours revealed TERT promoter (56%), CTNNB1 (28%), TP53 (18%) and ACVR2A (10%) as the most frequently mutated genes. ACVR2A mutation rates were higher in NASH-HCC than in other HCC aetiologies (10% vs. 3%, p <0.05). In vitro, ACVR2A silencing prompted a significant increase in cell proliferation in HCC cells. We identified a novel mutational signature (MutSig-NASH-HCC) significantly associated with NASH-HCC (16% vs. 2% in viral/alcohol-HCC, p = 0.03). Tumour mutational burden was higher in non-cirrhotic than in cirrhotic NASH-HCCs (1.45 vs. 0.94 mutations/megabase; p <0.0017). Compared to other aetiologies of HCC, NASH-HCCs were enriched in bile and fatty acid signalling, oxidative stress and inflammation, and presented a higher fraction of Wnt/TGF-β proliferation subclass tumours (42% vs. 26%, p = 0.01) and a lower prevalence of the CTNNB1 subclass. Compared to other aetiologies, NASH-HCC showed a significantly higher prevalence of an immunosuppressive cancer field. In 3 murine models of NASH-HCC, key features of human NASH-HCC were preserved. Conclusions: NASH-HCCs display unique molecular features including higher rates of ACVR2A mutations and the presence of a newly identified mutational signature. Lay summary: The prevalence of hepatocellular carcinoma (HCC) associated with non-alcoholic steatohepatitis (NASH) is increasing globally, but its molecular traits are not well characterised. In this study, we uncovered higher rates of ACVR2A mutations (10%) - a potential tumour suppressor - and the presence of a novel mutational signature that characterises NASH-related HCC
Interaction entre les macrophages, les hépatocytes et le virus de l'hépatite B : de la reprogrammation du phénotype des macrophages vers l'établissement et la maintenance de l'infection
Hepatitis B virus (HBV) chronically infects over 250 million people worldwide. Several treatments can be used to prevent the formation of de novo particles. However, they do not allow the total eradication of the infection. Therefore, it is necessary to develop new therapeutic strategies, including immune-therapeutic ones, which would be more likely to lead to an immunological control of HBV infections. We have recently shown that IL-1ß is the most effective antiviral cytokine against the replication of HBV in vitro. In the liver, IL-1ß is mainly produced by resident macrophages (also called Kupffer cells) or infiltrating cells (inflammatory monocytes differentiated into macrophages). Recent studies have shown that HBV is able to partially inhibit the induction of innate immune responses. Hence, it was necessary to determine if HBV was also able to block the production of IL-1ß by the different types of macrophages.The objective of this thesis was to study the effect of HBV on macrophage phenotypes and the impact of those modifications on the establishment of HBV infection in hepatocytes.Blood monocytes and liver macrophages were purified, respectively, from peripheral blood or hepatic resections, and were exposed to HBV during their differentiation and/or activation for monocytes, or only during activation for liver macrophages which are already in a differentiated state. HBV was able to partially inhibit the secretion of IL-6 and IL-1ß by pro-inflammatory macrophages. Moreover, HBV was able to inhibit IL-1ß secretion by liver macrophages stimulated by different ligands and, conditioned medium of pro-inflammatory macrophages could inhibit the establishment of infection in hepatocytes. This effect was reverted when macrophages were exposed to HBV, concomitantly with a lower production of IL-6 and IL-1ß.In summary, HBV is able to modify macrophage phenotypes to favour the establishment and persistence of HBV infection. The full understanding of the mechanistic basis of how HBV phenotypically modifies macrophages will be a first step towards the development of new therapeutic strategiesLe virus de l'hépatite B (HBV) infecte chroniquement plus de 250 millions de personnes. Des traitements existent permettant de contrôler la production de particules infectieuses. Cependant, aucun des traitements actuels ne permet d'éradiquer complètement l'infection. Il est donc nécessaire de développer de nouvelles stratégies thérapeutiques, incluant des approches immunothérapeutiques pour permettre un meilleur contrôle immunologique des infections HBV. Dans une étude récente menée au sein du laboratoire, il a été montré que l'IL-1ß est la cytokine ayant le plus fort effet antiviral contre la réplication d'HBV dans les hépatocytes. Dans le foie, la cytokine IL-1ß est principalement produite par les macrophages résidents (les cellules de Kupffer) ou infiltrant (monocytes inflammatoires différenciés en macrophages). De nombreuses études récentes ont montrés qu'HBV était capable de bloquer partiellement l'induction des réponses immunitaires innées. Il est donc important de déterminer si HBV est capable d'empêcher la production d'IL-1ß par les différents types de macrophages. L'objectif de cette thèse était d'étudier l'effet du virus sur le phénotype des macrophages et les implications de ces modifications phénotypiques sur l'établissement de l'infection dans les hépatocytes. Des monocytes du sang ou des macrophages du foie ont été purifiés, respectivement, du sang périphérique ou de résections hépatiques, et ont été exposés au virus pendant leur différentiation et/ou leur activation pour les monocytes, ou seulement pendant leur activation pour les macrophages hépatiques déjà différenciés. Il a été démontré que le virus de l'hépatite B est capable d'inhiber la sécrétion d'IL-6 et d'IL-1ß par les macrophages pro-inflammatoires. De plus, HBV est capable d'inhiber la sécrétion d'IL-1ß par les macrophages hépatiques stimulés par différents ligands. Finalement, les surnageants de macrophages pro-inflammatoires sont capables de bloquer l'établissement de l'infection, ce qui n'est pas le cas quand les macrophages ont été exposés au virus. Il apparait donc qu'HBV est capable de modifier le phénotype des macrophages pour favoriser l'établissement et la persistance de l'infection. La compréhension des mécanismes de subversion du phénotype des macrophages par le virus de l'hépatite B serait un premier pas vers le développement de nouvelles stratégies thérapeutique
Targeting immuno-metabolism and anti-viral immune responses in chronic hepatitis B.
No abstract availabl
Rôle de la petite GTPase ARL5b dans l’inhibition de la clairance bactérienne par le rhinovirus humain 16
International audienceNo abstract availabl
Liver macrophages: Friend or foe during hepatitis B infection?
International audienceThe Hepatitis B virus chronically infects the liver of 250 million people worldwide. Over the past decades, major advances have been made in the understanding of Hepatitis B virus life cycle in hepatocytes. Beside these parenchymal cells, the liver also contains resident and infiltrating myeloid cells involved in immune responses to pathogens and much less is known about their interplay with Hepatitis B virus. In this review, we summarized and discussed the current knowledge of the role of liver macrophages (including Kupffer cells and liver monocyte-derived macrophages), in HBV infection. While it is still unclear if liver macrophages play a role in the establishment and persistence of HBV infection, several studies disclosed data suggesting that HBV would favour liver macrophage anti-inflammatory phenotypes and thereby increase liver tolerance. In addition, alternatively activated liver macrophages might also play in the long term a key role in hepatitis B-associated pathogenesis, especially through the activation of hepatic stellate cells. Therapies aiming at a transient activation of pro-inflammatory liver macrophages should therefore be considered for the treatment of chronic HBV infection
- …