357 research outputs found

    Expression of GAD67 and Novel GAD67 Splice Variants During Human Fetal Pancreas Development: GAD67 Expression in the Fetal Pancreas

    Get PDF
    Glutamic acid decarboxylase (GAD) is a major inhibitory neurotransmitter in the brain, which catalyses the reaction of l-glutamate to γ-aminobutyric acid. There are two isoforms of GAD, a 65-kDa form and a 67-kDa form, which are encoded by two different genes. As previous studies suggested a role for GAD67 splice variants during fetal pancreas development, we have investigated the mRNA expression of GAD67 and GAD67 splice variants in a series of 14 human fetal pancreases between 14 weeks gestation and term and in adult control pancreases by RT-PCR. In this study, we demonstrate mRNA expression of GAD67 and four GAD67 splice variants, including GAD25, in human fetal and adult specimens. Some of the splice variants, including various proportions of exon 7 or a new exon between exons 6 and 7, have not been described before in the human pancreas. We speculate that the expression of these GAD67 splice variants might be related to human fetal pancreas development

    Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy.

    Get PDF
    Multimodal measurements combining broadband near-infrared spectroscopy (NIRS) and phosphorus magnetic resonance spectroscopy ((31)P MRS) assessed associations between changes in the oxidation state of cerebral mitochondrial cytochrome-c-oxidase (Δ[oxCCO]) and (31)P metabolite peak-area ratios during and after transient cerebral hypoxia-ischemia (HI) in the newborn piglet

    Differences between <i>Trypanosoma brucei gambiense</i> groups 1 and 2 in their resistance to killing by Trypanolytic factor 1

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; The three sub-species of &lt;i&gt;Trypanosoma brucei&lt;/i&gt; are important pathogens of sub-Saharan Africa. &lt;i&gt;T. b. brucei&lt;/i&gt; is unable to infect humans due to sensitivity to trypanosome lytic factors (TLF) 1 and 2 found in human serum. &lt;i&gt;T. b. rhodesiense&lt;/i&gt; and &lt;i&gt;T. b. gambiense&lt;/i&gt; are able to resist lysis by TLF. There are two distinct sub-groups of &lt;i&gt;T. b. gambiense&lt;/i&gt; that differ genetically and by human serum resistance phenotypes. Group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; have an invariant phenotype whereas group 2 show variable resistance. Previous data indicated that group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; are resistant to TLF-1 due in-part to reduced uptake of TLF-1 mediated by reduced expression of the TLF-1 receptor (the haptoglobin-hemoglobin receptor (&lt;i&gt;HpHbR&lt;/i&gt;)) gene. Here we investigate if this is also true in group 2 parasites.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology:&lt;/b&gt; Isogenic resistant and sensitive group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; were derived and compared to other T. brucei parasites. Both resistant and sensitive lines express the &lt;i&gt;HpHbR&lt;/i&gt; gene at similar levels and internalized fluorescently labeled TLF-1 similar fashion to &lt;i&gt;T. b. brucei&lt;/i&gt;. Both resistant and sensitive group 2, as well as group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt;, internalize recombinant APOL1, but only sensitive group 2 parasites are lysed.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; Our data indicate that, despite group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; avoiding TLF-1, it is resistant to the main lytic component, APOL1. Similarly group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; is innately resistant to APOL1, which could be based on the same mechanism. However, group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; variably displays this phenotype and expression does not appear to correlate with a change in expression site or expression of &lt;i&gt;HpHbR&lt;/i&gt;. Thus there are differences in the mechanism of human serum resistance between &lt;i&gt;T. b. gambiense&lt;/i&gt; groups 1 and 2.&lt;/p&gt

    The genome sequence of <i>Trypanosoma brucei gambiense</i>, causative agent of chronic Human African Trypanosomiasis

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; &lt;i&gt;Trypanosoma brucei gambiense&lt;/i&gt; is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a &lt;i&gt;T. b. brucei&lt;/i&gt; isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between &lt;i&gt;T. b. gambiense&lt;/i&gt; and the reference genome. We sought to identify features that were uniquely associated with &lt;i&gt;T. b. gambiense&lt;/i&gt; and its ability to infect humans.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods and findings:&lt;/b&gt; An improved high-quality draft genome sequence for the group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with &lt;i&gt;T. b. brucei&lt;/i&gt; showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972. A comparison of the variant surface glycoproteins (VSG) in &lt;i&gt;T. b. brucei&lt;/i&gt; with all &lt;i&gt;T. b. gambiense&lt;/i&gt; sequence reads showed that the essential structural repertoire of VSG domains is conserved across &lt;i&gt;T. brucei&lt;/i&gt;.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; This study provides the first estimate of intraspecific genomic variation within &lt;i&gt;T. brucei&lt;/i&gt;, and so has important consequences for future population genomics studies. We have shown that the &lt;i&gt;T. b. gambiense&lt;/i&gt; genome corresponds closely with the reference, which should therefore be an effective scaffold for any &lt;i&gt;T. brucei&lt;/i&gt; genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in &lt;i&gt;T. b. brucei&lt;/i&gt;, no &lt;i&gt;T. b. gambiense&lt;/i&gt;-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans.&lt;/p&gt

    Evolutionary and pulsational properties of white dwarf stars

    Get PDF
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Get PDF
    Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes

    Transient radio bursts from rotating neutron stars

    Full text link
    The `radio sky' is relatively unexplored for transient signals, although the potential of radio-transient searches is high, as demonstrated recently by the discovery of a previously unknown type of source which varies on timescales of minutes to hours. Here we report a new large-scale search for radio sources varying on much shorter timescales. This has revealed 11 objects characterized by single, dispersed bursts having durations between 2 and 30 ms. The average time intervals between bursts range from 4 minutes to 3 hours, with radio emission typically detectable for < 1 s per day. From an analysis of the burst arrival times, we have identified periodicities in the range 0.4 - 7 s for ten of the 11 sources, suggesting a rotating neutron star origin. Despite the small number of sources presently detected, their ephemeral nature implies a total Galactic population which significantly exceeds that of the regularly pulsing radio pulsars. Five of the ten sources have periods greater than 4 s, and period derivatives have been measured for three of the sources, with one having a very high inferred magnetic field of 5e13 G, suggesting that this new population is related to other classes of isolated neutron stars observed at X-ray and gamma-ray wavelengths.Comment: 10 pages, 4 figures. Accepted by Natur

    Cooling athletes with a spinal cord injury

    Get PDF
    Cooling strategies that help prevent a reduction in exercise capacity whilst exercising in the heat have received considerable research interest over the past 3 decades, especially in the lead up to a relatively hot Olympic and Paralympic Games. Progressing into the next Olympic/Paralympic cycle, the host, Rio de Janeiro, could again present an environmental challenge for competing athletes. Despite the interest and vast array of research into cooling strategies for the able-bodied athlete, less is known regarding the application of these cooling strategies in the thermoregulatory impaired spinal cord injured (SCI) athletic population. Individuals with a spinal cord injury (SCI) have a reduced afferent input to the thermoregulatory centre and a loss of both sweating capacity and vasomotor control below the level of the spinal cord lesion. The magnitude of this thermoregulatory impairment is proportional to the level of the lesion. For instance, individuals with high-level lesions (tetraplegia) are at a greater risk of heat illness than individuals with lower-level lesions (paraplegia) at a given exercise intensity. Therefore, cooling strategies may be highly beneficial in this population group, even in moderate ambient conditions (~21 °C). This review was undertaken to examine the scientific literature that addresses the application of cooling strategies in individuals with an SCI. Each method is discussed in regards to the practical issues associated with the method and the potential underlying mechanism. For instance, site-specific cooling would be more suitable for an athlete with an SCI than whole body water immersion, due to the practical difficulties of administering this method in this population group. From the studies reviewed, wearing an ice vest during intermittent sprint exercise has been shown to decrease thermal strain and improve performance. These garments have also been shown to be effective during exercise in the able-bodied. Drawing on additional findings from the able-bodied literature, the combination of methods used prior to and during exercise and/or during rest periods/half-time may increase the effectiveness of a strategy. However, due to the paucity of research involving athletes with an SCI, it is difficult to establish an optimal cooling strategy. Future studies are needed to ensure that research outcomes can be translated into meaningful performance enhancements by investigating cooling strategies under the constraints of actual competition. Cooling strategies that meet the demands of intermittent wheelchair sports need to be identified, with particular attention to the logistics of the sport

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2
    corecore