28 research outputs found

    Laser module based on monolithically integrated MOPAs at 1.5 ”m for space-borne lidar applications

    Get PDF
    Space-borne lidar systems require laser transmitters with very good performance in terms of output power, beam quality, conversion efficiency, long term reliability and environmental compatibility. Atmospheric gas sensing additionally requires spectral purity and stability. Solid state lasers are considered the most mature technology for space lidar applications, at expenses of a relatively large size and low conversion efficiency [1]- [3]. Fiber lasers present very high power levels and very good beam quality, but they require specific attention due to their sensitivity to radiation. In this sense, progresses have been made to develop high power fiber amplifiers for different space applications [4]-[6]. Recently, a new generation of high brightness semiconductor lasers based on tapered geometry has demonstrated relatively high average power levels together with a good beam quality [7]-[10]. These devices are emerging candidates for its direct use in space lidar systems

    Monolithic integration of a high power semiconductor master oscillator power amplifier

    Get PDF
    We present a high power semiconductor Master Oscillator Power Amplifier monolithically integrated on InP, which includes a modulation section. This device can be used for random-modulation-continuous wave lidar systems or free-space communications

    The H2020-SPACE-SIPHODIAS project: Space-grade optoelectronic interfaces for photonic digital and analogue very-high-throughput satellite payloads

    Get PDF
    The EU-SIPhoDiAS project deals with the development of critical photonic building blocks needed for high-performance and low size, weight, and power (SWaP) photonics-enabled Very High Throughput Satellites (VHTS). In this presentation, we report on the design and fabrication activities during the first year of the project concerning the targeted family of digital and microwave photonic components. This effort aims to demonstrate components of enhanced reliability at technology readiness level (TRL) 7. Specifically, with respect to microwave photonic links, we report: (i) the design of Ka and Q-bands analogue photodetectors that will be assembled in compact packages, allowing for very high bandwidth per unit area and (ii) on the design of compact V-band GaAs electro-optic modulator arrays, which use a folded-path optical configuration to manage all fiber interfaces packaged opposite direct in-line RF feeds for ease of board layouts and mass/size benefits. With respect to digital links, we report on the development of 100 Gb/s (4 x 25 Gb/s) digital optical transceiver sub-assemblies developed using flip-chip mounting of electronic and opto-parts on a high-reliability borosilicate substrate. The transceiver chipset developed specifically for this project refers to fully-custom 25 Gb/s radiation hard (RH) VCSEL driver and TIA ICs designed in IHP’s 130 nm SiGe BiCMOS Rad-Hard process

    High power, low noise 1.5 micron diode lasers for microwave photonics.

    No full text
    Cette thĂšse porte sur la conception, la rĂ©alisation et la caractĂ©risation de diodes lasers de puissance, faible bruit Ă  1.5 ”m sur InP pour des applications d’optique hyperfrĂ©quence, notamment pour des liaisons optiques analogiques de grande dynamique pour les systĂšmes radar. La premiĂšre partie du travail a consistĂ© Ă  modĂ©liser et concevoir des structures laser DFB ayant de faibles pertes internes. Ces structures, appelĂ©es lasers Ă  semelle, incorporent une couche Ă©paisse de matĂ©riaux entre la zone active et le substrat pour agrandir et dĂ©localiser le mode propre optique des zones dopĂ©es p. La complexitĂ© de la conception rĂ©sidait dans le bon compromis Ă  trouver entre les performances statiques et dynamiques. Nous avons rĂ©alisĂ© des diodes-lasers DFB avec une puissance > 150 mW, un rendement de 0.4 W/A, un niveau de bruit de 160 dB/Hz et une bande passante de modulation Ă  3 dB de 7.5 GHz. Les composants ont ensuite Ă©tĂ© caractĂ©risĂ©s puis Ă©valuĂ©s dans des liaisons analogiques. Nous avons dĂ©montrĂ© des performances de gain de liaison, de dynamique et de point de compression Ă  l’état de l’art mondial. En bande L (1-2 GHz) par exemple, nous avons montrĂ© des liaisons avec 0.5 dB de gain, un point de compression de 21 dBm et une dynamique (SFDR) de 122 dB.Hz2/3.En utilisant la mĂȘme mĂ©thodologie de conception, la derniĂšre partie du travail de thĂšse a Ă©tĂ© consacrĂ©e Ă  la rĂ©alisation et Ă  la caractĂ©risation de lasers de puissance Ă  verrouillage de modes pour la gĂ©nĂ©ration de train d’impulsions ultra-courts et la gĂ©nĂ©ration de peignes de frĂ©quences. Ces structures prĂ©sentent de trĂšs faibles largeurs de raie RF (550 Hz) et de trĂšs fortes puissances optiques (> 18 W en puissance crĂȘte).This work focuses on the design, realization and characterization of high power, low noise 1.5 ”m diode lasers for microwave applications and more particularly for high dynamic optical analog link for radar systems. The first part of this study deals with modeling and design of low internal losses DFB laser structures. These specific structures are called slab-coupled optical waveguide lasers, and are composed of a thick layer between the active layer and the substrate. The aim of this waveguide is to enlarge the optical eigenmode and to move the optical mode away from p-doped layers. The main difficulty was to find the good trade-off between laser static performances (optical power, efficiency) and dynamic performances (RIN and modulation bandwidth). We have succeeded in developing high efficiency (0.4 W/A), low noise (RIN ≈ 160 dB/Hz) DFB lasers with more than 150 mW and a 3 dB modulation bandwidth up to 7.5 GHz. We have then characterized our components on wide band and narrow band analog links. We have demonstrated state of the art gain links, dynamic and 1 dB compression power. In the L band (1-2 GHz) for example, we have obtained an optical link with a gain of 0.5 dB, a compression power of 21 dBm and a dynamic (SFDR) of 122 dB.Hz2/3.Finally we have applied the methodology and the design of slab-coupled optical waveguide structures to develop high power mode-locked lasers for ultra-short pulses generation and for optical and electrical comb generation. We have demonstrated narrow RF linewidth (550 Hz) lasers with very high power (continuous power > 400 mW and peak power > 18 W)

    Diode laser 1.5 micron de puissance et faible bruit pour l’optique hyperfrĂ©quence.

    No full text
    This work focuses on the design, realization and characterization of high power, low noise 1.5 ”m diode lasers for microwave applications and more particularly for high dynamic optical analog link for radar systems. The first part of this study deals with modeling and design of low internal losses DFB laser structures. These specific structures are called slab-coupled optical waveguide lasers, and are composed of a thick layer between the active layer and the substrate. The aim of this waveguide is to enlarge the optical eigenmode and to move the optical mode away from p-doped layers. The main difficulty was to find the good trade-off between laser static performances (optical power, efficiency) and dynamic performances (RIN and modulation bandwidth). We have succeeded in developing high efficiency (0.4 W/A), low noise (RIN ≈ 160 dB/Hz) DFB lasers with more than 150 mW and a 3 dB modulation bandwidth up to 7.5 GHz. We have then characterized our components on wide band and narrow band analog links. We have demonstrated state of the art gain links, dynamic and 1 dB compression power. In the L band (1-2 GHz) for example, we have obtained an optical link with a gain of 0.5 dB, a compression power of 21 dBm and a dynamic (SFDR) of 122 dB.Hz2/3.Finally we have applied the methodology and the design of slab-coupled optical waveguide structures to develop high power mode-locked lasers for ultra-short pulses generation and for optical and electrical comb generation. We have demonstrated narrow RF linewidth (550 Hz) lasers with very high power (continuous power > 400 mW and peak power > 18 W).Cette thĂšse porte sur la conception, la rĂ©alisation et la caractĂ©risation de diodes lasers de puissance, faible bruit Ă  1.5 ”m sur InP pour des applications d’optique hyperfrĂ©quence, notamment pour des liaisons optiques analogiques de grande dynamique pour les systĂšmes radar. La premiĂšre partie du travail a consistĂ© Ă  modĂ©liser et concevoir des structures laser DFB ayant de faibles pertes internes. Ces structures, appelĂ©es lasers Ă  semelle, incorporent une couche Ă©paisse de matĂ©riaux entre la zone active et le substrat pour agrandir et dĂ©localiser le mode propre optique des zones dopĂ©es p. La complexitĂ© de la conception rĂ©sidait dans le bon compromis Ă  trouver entre les performances statiques et dynamiques. Nous avons rĂ©alisĂ© des diodes-lasers DFB avec une puissance > 150 mW, un rendement de 0.4 W/A, un niveau de bruit de 160 dB/Hz et une bande passante de modulation Ă  3 dB de 7.5 GHz. Les composants ont ensuite Ă©tĂ© caractĂ©risĂ©s puis Ă©valuĂ©s dans des liaisons analogiques. Nous avons dĂ©montrĂ© des performances de gain de liaison, de dynamique et de point de compression Ă  l’état de l’art mondial. En bande L (1-2 GHz) par exemple, nous avons montrĂ© des liaisons avec 0.5 dB de gain, un point de compression de 21 dBm et une dynamique (SFDR) de 122 dB.Hz2/3.En utilisant la mĂȘme mĂ©thodologie de conception, la derniĂšre partie du travail de thĂšse a Ă©tĂ© consacrĂ©e Ă  la rĂ©alisation et Ă  la caractĂ©risation de lasers de puissance Ă  verrouillage de modes pour la gĂ©nĂ©ration de train d’impulsions ultra-courts et la gĂ©nĂ©ration de peignes de frĂ©quences. Ces structures prĂ©sentent de trĂšs faibles largeurs de raie RF (550 Hz) et de trĂšs fortes puissances optiques (> 18 W en puissance crĂȘte)

    High Power, Low RIN, 1.55ÎŒm DFB Laser for Analog Applications

    No full text
    In this paper we present a directly modulated laser (DML) designed for high dynamic range analog link [1]. These devices are of great interest for local oscillator distribution or receiver signal remoting. Use of direct modulation is simpler and less expensive than external modulation. To get high power and high efficiency we focused in a first time on the reduction of internal losses in the cavity by decreasing the optical confinement in p-doped indium phosphide (InP). The main constraint was to maintain a sufficient overlap between the optical field and the quantum wells to have a low relative intensity noise (RIN) and a large modulation bandwidth. A compromise has been done on the optical confinement to get in the same time good static performances (power and efficiency) and dynamic performances (RIN and bandwidth). In a second step we tried to reduce the beam divergence and, above all, the ellipticity of the mode. Wafers were processed in dual channel shallow ridge DFB. 1mm long cavities were cleaved and facets were anti-reflective (AR)/ highly reflective (HR) coated. Lasers are mounted p-up on AlN submounts integrating coplanar lines for both DC and RF characterization. Maximum power was 135 mW at 600 mA bias current. The efficiency defined as (Power/(Current-Threshold current)) was up to 0.3 W/A at a bias current as high as 500 mA. RIN measurement has showed a RIN level below -155 dB/Hz on the 40 MHz to 20 GHz range at 450 mA bias current. The modulation bandwidth is up to 6.5 GHz. The side mode suppression ratio (SMSR) exceeds 55dBm. Due to the use of shallow ridge structure linearity of P-I and injection current is very good but the divergence of the beam FHWM of 14°x31°. Future improvements will focus on the reduction of the divergence and the ellipticity of the beam, necessary for a better coupling into an optical fibre

    Développement de composants de puissance pour la réalisation de liaisons optiques hyperfréquences de grande dynamique

    No full text
    Les liaisons optiques hyperfrĂ©quences prĂ©sentent aujourd'hui des intĂ©rĂȘts pour les oscillateurs opto-Ă©lectroniques, la radio sur fibre ou le dĂ©port Ă  la rĂ©ception de signaux analogiques. Dans les radars par exemple, le dĂ©ploiement de liaisons optiques analogiques en lieu et place de cĂąbles coaxiaux est dĂ©jĂ  une rĂ©alitĂ© [1]. Les principaux avantages des liaisons optiques sont la rĂ©duction de taille et de masse, les faibles pertes de propagation ou l'immunitĂ© Ă©lectromagnĂ©tique et sont dus Ă  l'utilisation de la fibre optique. Depuis une vingtaine d'annĂ©e, plusieurs types de liaisons optiques hyperfrĂ©quences ont Ă©tĂ© rapportĂ©s : modulation directe ou externe, dĂ©tection directe ou diffĂ©rentielle, avec rĂ©duction du bruit [2]. Par rapport aux liaisons Ă  modulation directe, les liaisons Ă  modulation externe permettent gĂ©nĂ©ralement de meilleures performances en termes de bande passante, de gain ou de dynamique. Cependant malgrĂ© de moins bonnes performances, la compacitĂ© et le faible coĂ»t des liaisons Ă  modulation directe en font un candidat potentiellement trĂšs attractif jusqu'Ă  6 GHz, en remplacement des cĂąbles coaxiaux. Dans cet article, nous prĂ©sentons le dĂ©veloppement d'une source laser DFB de puissance et d'une photodiode UTC ayant des performances spĂ©cifiques pour la transmission de signaux analogiques. GrĂące Ă  ces deux composants, nous avons dĂ©montrĂ© des performances de liaisons optiques en bande L et S Ă  l'Ă©tat de l'art, alliant fort gain, point de compression Ă©levĂ© et large dynamique (SFDR)

    Thermal dissipation in InP based optical lasers and amplifiers

    No full text
    International audienceIn a semi-conductor optical amplifier (SOA) or a laser, the behavior of the device can be effected the temperature elevation due to high current injection level in the chip and a limited efficiency. For example, the optical output power of a laser or the optical gain in a SOA is reduced when the temperature of the junction increases. This latter can be controlled or monitored thanks to a thermo-electronic cooler (or a Peltier element) and a thermistor. In this paper, we calculate the thermal dissipation in semiconductor Optical Amplifier and laser. We investigate the effect of the material composition, the number of wells, the type of structure (Buried or Ridge), on the thermal resistance of the component and try to extract some rules towards minimization of temperature elevation. The influence of heat repartition inside the wells has been evaluated as well as the use of thick asymmetric cladding layer in the structure. In the latter case, optimization of layer composition and waveguide dimension has been performed

    Oscillateur optoélectronique couplé

    No full text
    National audienceNous présentons dans cette communication la réalisation d'un oscillateur optoélectronique couplé, ou COEO et un premier résultat en bruit de phas

    High power directly modulated DFB lasers for large dynamic range optical transmission

    No full text
    International audienceIn this letter we present high power and low RIN (Relative Intensity Noise) directly modulated distributed feedback lasers at 1.55 ”m for analog transmissions (for radars and electronic warfare)
    corecore