12 research outputs found

    Computational Biology and Bioinformatics in Nigeria

    Get PDF
    Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries. © 2014 Fatumo et al.SAF was supported by H3ABioNet NABDA Node, Abuja, Nigeria with NIH Common Fund Award/NHGRI Grant Number U41HG006941 and Genetic Epidemiology Group at Wellcome Trust Sanger Institute.Published versio

    Genetic loci implicated in meta-analysis of body shape in Africans.

    Get PDF
    BACKGROUND AND AIMS: Obesity is one of the leading causes of non-communicable diseases (NCD). Thus, NCD risk varies in obese individuals based on the location of their fat depots; while subcutaneous adiposity is protective, visceral adiposity increases NCD risk. Although, previously anthropometric traits have been used to quantify body shape in low-income settings, there is no consensus on how it should be assessed. Hence, there is a growing interest to evaluate body shape derived from the principal component analysis (PCA) of anthropometric traits; however, this is yet to be explored in individuals of African ancestry whose body shape is different from those of Europeans. We set out to capture body shape in its multidimensional structure and examine the association between genetic variants and body shape in individuals of African ancestry. METHOD AND RESULTS: We performed a genome-wide association study (GWAS) for body shape derived from PCA analysis of anthropometric traits in the Ugandan General Population Cohort (GPC, n = 6407) and the South African Zulu Cohort (SZC, n = 2595), followed by a GWAS meta-analysis to assess the genetic variants associated with body shape. We identified variants in FGF12, GRM8, TLX1NB and TRAP1 to be associated with body shape. These genes were different from the genes been associated with BMI, height, weight, WC and waist-hip ration in continental Africans. Notably, we also observed that a standard deviation change in body shape was associated with an increase in blood pressure and blood lipids. CONCLUSION: Variants associated with body shape, as a composite variable might be different for those of individual anthropometric traits. Larger studies are required to further explore these phenomena

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Transferability of genetic risk scores in African populations.

    Get PDF
    The poor transferability of genetic risk scores (GRSs) derived from European ancestry data in diverse populations is a cause of concern. We set out to evaluate whether GRSs derived from data of African American individuals and multiancestry data perform better in sub-Saharan Africa (SSA) compared to European ancestry-derived scores. Using summary statistics from the Million Veteran Program (MVP), we showed that GRSs derived from data of African American individuals enhance polygenic prediction of lipid traits in SSA compared to European and multiancestry scores. However, our GRS prediction varied greatly within SSA between the South African Zulu (low-density lipoprotein cholesterol (LDL-C), R2 = 8.14%) and Ugandan cohorts (LDL-C, R2 = 0.026%). We postulate that differences in the genetic and environmental factors between these population groups might lead to the poor transferability of GRSs within SSA. More effort is required to optimize polygenic prediction in Africa

    Transferability of genetic risk scores in African populations

    No full text
    A new study reveals that polygenic scores for lipid traits derived from data of African American individuals have high predictive value in a South African Zulu cohort but are poor predictors in a cohort from Uganda, further highlighting the need to improve polygenic predictions in populations of African ancestries. The poor transferability of genetic risk scores (GRSs) derived from European ancestry data in diverse populations is a cause of concern. We set out to evaluate whether GRSs derived from data of African American individuals and multiancestry data perform better in sub-Saharan Africa (SSA) compared to European ancestry-derived scores. Using summary statistics from the Million Veteran Program (MVP), we showed that GRSs derived from data of African American individuals enhance polygenic prediction of lipid traits in SSA compared to European and multiancestry scores. However, our GRS prediction varied greatly within SSA between the South African Zulu (low-density lipoprotein cholesterol (LDL-C), R-2 = 8.14%) and Ugandan cohorts (LDL-C, R-2 = 0.026%). We postulate that differences in the genetic and environmental factors between these population groups might lead to the poor transferability of GRSs within SSA. More effort is required to optimize polygenic prediction in Africa

    Metabolic traits and stroke risk in individuals of African ancestry:mendelian randomization analysis

    No full text
    Abstract Background and Purpose: Metabolic traits affect ischemic stroke (IS) risk, but the degree to which this varies across different ethnic ancestries is not known. Our aim was to apply Mendelian randomization to investigate the causal effects of type 2 diabetes (T2D) liability and lipid traits on IS risk in African ancestry individuals, and to compare them to estimates obtained in European ancestry individuals. Methods: For African ancestry individuals, genetic proxies for T2D liability and circulating lipids were obtained from a meta-analysis of the African Partnership for Chronic Disease Research study, the UK Biobank, and the Million Veteran Program (total N=77 061). Genetic association estimates for IS risk were obtained from the Consortium of Minority Population Genome-Wide Association Studies of Stroke (3734 cases and 18 317 controls). For European ancestry individuals, genetic proxies for the same metabolic traits were obtained from Million Veteran Program (lipids N=297 626, T2D N=148 726 cases, and 965 732 controls), and genetic association estimates for IS risk were obtained from the MEGASTROKE study (34 217 cases and 406 111 controls). Random-effects inverse-variance weighted Mendelian randomization was used as the main method, complemented with sensitivity analyses more robust to pleiotropy. Results: Higher genetically proxied T2D liability, LDL-C (low-density lipoprotein cholesterol), total cholesterol and lower genetically proxied HDL-C (high-density lipoprotein cholesterol) were associated with increased risk of IS in African ancestry individuals (odds ratio per doubling the odds of T2D liability [95% CI], 1.09 [1.07–1.11]; per standard-deviation increase in LDL-C, 1.12 [1.04–1.21]; total cholesterol: 1.23 [1.06–1.43]; HDL-C, 0.93 [0.89–0.99]). There was no evidence for differences in these estimates when performing analyses in European ancestry individuals. Conclusions: Our analyses support a causal effect of T2D liability and lipid traits on IS risk in African ancestry individuals, with Mendelian randomization estimates similar to those obtained in European ancestry individuals

    Lipid traits and type 2 diabetes risk in African ancestry individuals:a Mendelian Randomization study

    No full text
    Abstract Background: Dyslipidaemia is highly prevalent in individuals with type 2 diabetes mellitus (T2DM). Numerous studies have sought to disentangle the causal relationship between dyslipidaemia and T2DM liability. However, conventional observational studies are vulnerable to confounding. Mendelian Randomization (MR) studies (which address this bias) on lipids and T2DM liability have focused on European ancestry individuals, with none to date having been performed in individuals of African ancestry. We therefore sought to use MR to investigate the causal effect of various lipid traits on T2DM liability in African ancestry individuals. Methods: Using univariable and multivariable two-sample MR, we leveraged summary-level data for lipid traits and T2DM liability from the African Partnership for Chronic Disease Research (APCDR) (N = 13,612, 36.9% men) and from African ancestry individuals in the Million Veteran Program (Ncases = 23,305 and Ncontrols = 30,140, 87.2% men), respectively. Genetic instruments were thus selected from the APCDR after which they were clumped to obtain independent instruments. We used a random–effects inverse variance weighted method in our primary analysis, complementing this with additional sensitivity analyses robust to the presence of pleiotropy. Findings: Increased genetically proxied low-density lipoprotein cholesterol (LDL‐C) and total cholesterol (TC) levels were associated with increased T2DM liability in African ancestry individuals (odds ratio (OR) [95% confidence interval, P-value] per standard deviation (SD) increase in LDL‐C = 1.052 [1.000 to 1.106, P = 0.046] and per SD increase in TC = 1.089 [1.014 to 1.170, P = 0.019]). Conversely, increased genetically proxied high-density lipoprotein cholesterol (HDL‐C) was associated with reduced T2DM liability (OR per SD increase in HDL‐C = 0.915 [0.843 to 0.993, P = 0.033]). The OR on T2DM per SD increase in genetically proxied triglyceride (TG) levels was 0.884 [0.773 to 1.011, P = 0.072]. With respect to lipid‐lowering drug targets, we found that genetically proxied 3–hydroxy–3–methylglutaryl–CoA reductase (HMGCR) inhibition was associated with increased T2DM liability (OR per SD decrease in genetically proxied LDL-C = 1.68 [1.03–2.72, P = 0.04]) but we did not find evidence of a relationship between genetically proxied proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and T2DM liability. Interpretation: Consistent with MR findings in Europeans, HDL‐C exerts a protective effect on T2DM liability and HMGCR inhibition increases T2DM liability in African ancestry individuals. However, in contrast to European ancestry individuals, LDL‐C may increase T2DM liability in African ancestry individuals. This raises the possibility of ethnic differences in the metabolic effects of dyslipidaemia in T2DM

    Author Correction: Africa-specific human genetic variation near CHD1L associates with HIV-1 load.

    No full text
    Correction to: Nature https://doi.org/10.1038/s41586-023-06370-4 Published online 2 August 2023In the version of the article originally published, the “Acknowledgements” section was missing the following funding statement: “This work was supported in part by IAVI funded by the United States Agency for International Development (USAID). The full list of IAVI donors is available at http://www.iavi.org. The contents of this manuscript are the responsibility of the authors and do not necessarily reflect the views of USAID or the US Government”. This has now been added to the HTML and PDF versions of the article
    corecore