48 research outputs found

    Synthèse automatique de circuits numériques à partir de spécifications temporelles

    Get PDF
    The work presented in this thesis aims at automatically prototype communication and control designs from declarative temporal specifications. From a set of PSL properties, we produce a synthesizable RTL design automatically. The proposed method is modular, in contrast to previously published methods that were based on automata theory. From each property, we produce a component that observes some operands and generates waveforms for the other operands: the reactant. First, a library of primitive reactants has been provided for FL and SERE operators. To this goal, a dependency relation is defined for each operator that expresses the dependency among its operands using the operator's semantics. Then, the dependency relation of each operator is interpreted as a hardware component that implements the operator: the operator's primitive reactant. Using this formalization, a method is proposed to automatically decide which signals of a property are observed and which are generated. In the cases when specifying the signal direction is not possible, a solver is implemented to identify the signal value. In addition, the way of identifying the value of the signal that is generated in several properties is addressed. The final circuit is the interconnection of the properties' reactants and solvers. A prototype tool SyntHorus2, which is an extension to HORUS, has been developed. It takes PSL properties as its inputs, and generates the synthesizable VHDL code of the circuit. In addition, it generates some complementary properties to verify if the set of specification is coherent and complete. The method is efficient, and synthesizes control circuits in a few seconds. Results obtained on classical benchmarks show that our technique compiles properties more efficiently than previous prototype tools.Les travaux présentés dans cette thèse visent à produire automatiquement des prototypes de circuits de communication et de contrôle à partir de spécifications temporelles déclaratives. Partant d'un ensemble de propriétés écrites en langage PSL, nous produisons un modèle RTL synthétisable automatiquement. La méthode proposée est modulaire, contrairement aux méthodes publiées antérieurement qui étaient fondées sur la théorie des automates. Pour chaque propriété, nous produisons un composant qui observe certains opérandes et génère des chronogrammes pour les autres opérandes : le module réactif. Tout d'abord, une bibliothèque des modules réactifs primitifs a été développée pour les opérateurs FL et SERE. Pour ce faire, une relation de dépendance a été définie pour chaque opérateur : fondée sur la sémantique de l'opérateur, elle exprime la dépendance entre ses opérandes. Ensuite, la relation de dépendance de chaque opérateur est interprétée comme un composant matériel qui met en œuvre l'opérateur : c'est le module réactif primitif de l'opérateur. À l'aide de cette formalisation, nous proposons une méthode pour déterminer automatiquement quels signaux d'une propriété sont observés et lesquels sont générés. Dans le cas où il n'est pas possible de déterminer le sens du signal, un solveur est ajouté pour identifier la valeur du signal. Le solveur sert aussi à déterminer la valeur d'un signal généré par plusieurs propriétés. Le circuit final est l'interconnexion des modules réactifs et des solveurs pour l'ensemble des propriétés. Un outil prototype, SyntHorus2, qui est une extension d'HORUS, a été mis développé. Il prend les propriétés PSL comme entrées et génère le code VHDL synthétisable du circuit. En outre, il génère des propriétés complémentaires pour vérifier si l'ensemble des spécifications est cohérent et complet. La méthode est efficace et synthétise des circuits de commande en quelques secondes. Les résultats que nous avons obtenus sur des jeux d'essais classiques montrent que notre technique compile les propriétés plus efficacement que les outils prototypes qui l'ont précédée

    Investigating the Use of Straw in Removing Oil Pollution from Water

    Get PDF
    Organic hydrocarbons as a result of carcinogenesis and mutation caused many concerns. In this research, straw and chalk absorber was used as an organic adsorbent to remove oil pollution from wastewater. The adsorption experiments were performed discontinuously using oil-containing laboratory solutions. Optimum adsorption conditions were obtained by changing the factors affecting adsorption including pH, initial concentration of contaminant, contact time and adsorbent amount on adsorption at different levels, the oil absorption was determined by weighting method. Ultimately, the use of adsorbent for laboratory wastewater was studied. The highest absorbent efficiency at the time of equilibrium was observed for absorbing oil in 15 minutes a bout 28.85% absorbance, which did not have a significant difference with other contact times, which could be due to low contact time and the lowest value was observed with a significant difference of 3 minutes about 17.82% absorption, with the absorption rate being most significant in relation to the time of low, due to increased absorption time Increases. The highest rate of straw absorption was observed in pH = 7, which did not have a significant difference with other pH about36.95% absorption and the lowest percentage of adsorption was observed at pH = 9, which had no significant difference with other  pHs (19.09% absorption; P <0.05). The effect of straw absorbent values in 2 g/L was significantly higher than other amount of adsorbents about 61.05% absorption and the lowest percentage of adsorption was significantly different from other values in 0.25 and 0.5 grams per liter about 25.92%. Therefore, it can be concluded that the straw absorbent, in the form of adding more contact time, has a high efficiency in absorbing oil from wastewater and can be used in the treatment of industrial wastewater

    The prevalence of malnutrition and other related factors among children with autism spectrum disorder (ASD)

    Get PDF
    Introduction:Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by difficulties with social interaction and communication, and by restricted and repetitive behavior. Children with ASD are at risk of nutritional problems that could impact growth and anthropometric indices over both the short and long term. The aim of present study was to determine prevalence of malnutrition and other factors related to the malnutrition among children and adolescent with autism disorder.Material and method:To assess the prevalence of malnutrition indicators among preschool children with ASD, a cross-sectional study was conducted among 81 children and adolescents who referred to subspecialized and specialized Autism Akbar Children‘s Hospital, Mashhad University of Medical Sciences, Mashhad, Iran. Weight and height measurements were assessed based on standard protocols. The z-score of anthropometric indices was determined for all participants. Participants were asked about nutritional problems by the interview from their parents. Result:In the current study, the mean ± SD of age was 10.1±3.7 years old. Among participants 3.7% were with Diarrhea, 33.3% with Constipation, 4.9% with Reflux, 3.7% with Flatulence, and 1.2% with Steatorrhea. The prevalence of both of food neophobia and food Allergy was 16%. Furthermore, 18.5% had poor appetite, 23.5% had moderate and 58% had good appetite. Based on standardized z-scores, the overall prevalence of under-weight, risk of overweight, overweight, and obese was 1.2%, 22.2%, 12.3%, and 7.4%, respectively. Among participants 4.9% was stunting.Conclusion:Based on aforementioned prevalence, improving nutritional problems and anthropometric indices among ASD children and adolescents are crucial issue

    The Effect of Combined Herbal Capsule on Glycemic Indices and Lipid Profile in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Clinical Trial

    Get PDF
    Objectives: The present study aimed to investigate the potential effects of the combined herbal capsule (CHC), as a nutritional supplement, on glycemic indices (GIs) and lipid profile (LP) of patients with type 2 diabetes mellitus (T2DM). Methods: Following a randomized, single-blind, placebo-controlled clinical trial, the current study was conducted on 80 cases with T2DM who were randomly assigned into two groups of treatment (CHCs; n = 40) and control (placebo; n = 40). Both groups received the intervention (500 mg capsules) twice a day for three months, without changes in the previous dose of oral anti-hyperglycemic drugs. The GI and LP levels were measured before the intervention and three months later to investigate the potential efficacy of the interventions. Results: For those in the intervention group, the mean GI i.e., fasting blood sugar, two hours postprandial (2hpp), and HbAlc] was significantly different after 3 months (P 0.05). The HDL-C level was also significantly improved in the intervention group compared to the control group (P < 0.05). Conclusions: This study demonstrated that receiving CHCs could improve GI and LP levels (TG, LDL-C, and HDL-C, except for TC), which indicates its potential to control T2DM. Moreover, no significant side effect was observed in the intervention group. It can be argued that the use of CHCs, as adjuvant therapy, in combination with conventional hypoglycemic and lipid-lowering drugs, as well as following a modified lifestyle, not only can significantly enhance glycemic control but also may prevent T2DM complications

    Description of Epidemiological Features, Symptoms and Mortality of the Patients with COVID-19 in Some Provinces of Iran

    Get PDF
    Background: Clinical manifestations of COVID-19 are different. There are some risk factors for COVID-19. This study aimed to describe the epidemiological features, symptoms and mortality of the patients with COVID-19 in Iran. Methods: This were a cohort study performed on 103,179 patients with COVID-19. The demographic and clinical data were collected in selected provinces. The required data of all patients was extracted from the COVID registry system and analyzed using STATA version 14 and Excel 2016. Results: The mean age was 52.40 years for men and 52.41 years for women. About 55.2% of the study population were male and 44.8% were female. Totally, 60.9% (5085) of deaths happened in men and 39.1% (3263) in women. The mean time from onset of symptoms to hospitalization in men and women were 3.47 and 3.48 days, respectively. The mean time from onset of symptoms to isolation was 2.81 days in men and was 2.87 days in women, from onset of symptoms to death was 9.29 and 9.54 days, respectively, from onset of symptoms to discharge was 7.47 and 7.39 days, and from hospitalization to death was 6.76 and 7.05 days. Cough and shortness of breath were the most common symptoms in the patients. Conclusion: According to the results, the overall mortality rate was higher in men than women. Women with cardiovascular disease and diabetes were more likely to die. The mean time from onset of symptoms to hospitalization, isolation, and discharge was similar in men and women

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18 : a geospatial modelling study

    Get PDF
    Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels.Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km x 5 km resolution in 98 LMICs based on 2.1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution.Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205000 (95% uncertainty interval 147000-257000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution.Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
    corecore