7 research outputs found

    Performance Evaluation of Hormozgan University of Medical Sciences (HUMS) hospitals based on Pabon Lasso Model

    No full text
    Background: Hospitals need a system for evaluating and monitoring performance for promotion the efficiency and effectiveness of their services and outcomes. Pabon Lasso model is a graphical chart that can be used to identify the current status and performance level of hospitals by combining hospital indicators, simultaneously.  Therefore, this study aimed to evaluate the performance of Hormozgan University of Medical Sciences (HUMS) hospitals during a six-year period using this model. Methods: This descriptive study includes all teaching and non-teaching hospitals affiliated with the HUMS. After gathering the required information related to three indices: Bed Occupancy Rate, Bed Turnover Rate and Average Length of Stay for the years 2009 to 2014 from the statistical systems and yearbooks, the situation of hospitals in terms of indices by drawing Pabon Lasso graphical charts using SPSS version 16, were analyzed. Results: The results showed that during a six-year period, on average, 26 percent of hospitals were placed in zone I, that is the inefficient area, 28 percent in zone II, 30 percent in zone III which is an efficient area of the model and 16% in zone IV of the Pabon Lasso model. Conclusion: The findings indicated that the utilization of hospitals beds is relatively desirable.  Periodic monitoring of province centers and determining their status in the model, and also, performance assessment from another dimension is suggested in order to achieve more comprehensive and more accurate results

    An up-to-date GPS velocity field of Iran

    No full text
    In this study we present an up-to-date velocity field of Iran, including the largest number of data ever presentedon this region. It includes both a synthesis of all previously published campaign data (Raeesi et al., 2016) andall data from the Iranian Permanent GNSS Network (IPGN). The IPGN data cover some parts of Iran whichwere previously scarcely documented. These stations have been measured for 7 years. In total, more than 400instrumented sites are presented. From this velocity field, we calculated the strain rate.In this paper, we will show the contribution of this very dense velocity field to the detailed understanding of theactive tectonics of the various regions of Iran (Makran, Zagros, Alborz, ...)

    Lexical Access in Persian Normal Speakers: Picture Naming, Verbal Fluency and Spontaneous Speech

    No full text
    Objectives: Lexical access is the process by which the basic conceptual, syntactical and morpho-phonological information of words are activated. Most studies of lexical access have focused on picture naming. There is hardly any previous research on other parameters of lexical access such as verbal fluency and analysis of connected speech in Persian normal participants. This study investigates the lexical access performance in normal speakers in different issues such as age, sex and education. Methods: The performance of 120 adult Persian speakers in three tasks including picture naming, verbal fluency and connected speech, was examined using "Persian Lexical Access Assessment Package”. The performance of participants between two gender groups (male/female), three education groups (below 5 years, above 12 years, between 5 and 12 years) and three age groups (18-35 years, 36-55 years, 56-75 years) were compared. Results: According to findings, picture naming increased with increasing education and decreased with increasing age. The performance of participants in phonological and semantic verbal fluency showed improvement with age and education. No significant difference was seen between males and females in verbal fluency task. In the analysis of connected speech there were no significant differences between different age and education groups and just mean length of utterance in males was significantly higher than females. Discussion: The findings could be a primitive scale for comparison between normal subjects and patients in lexical access tasks, furthermore it could be a horizon for planning of treatment goals in patients with word finding problem according to age, gender and education

    GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran

    No full text
    International audienceA network of 54 survey GPS sites, 28 continuous GPS stations and three absolute gravity (AG) observation sites have been set up in the Alborz mountain range to quantify the present-day kinematics of the range. Our results allow us to accurately estimate the motion of the South Caspian block (SCB) for the first time, and indicate rotation of the SCB relative to Eurasia, accounting for the left lateral motion in the Alborz range. In light of these new results, it clearly appears that deformation rates vary along the range, the eastern part accommodating mainly left lateral strike slip (2 mm yr(-1) south of the range and 5 mm yr(-1) north of the range) with a very low range normal shortening rate on the Khazar thrust fault (similar to 2 mm yr(-1)), and the western part accommodating range normal shortening (similar to 6 mm yr-1) on the Khazar thrust fault with a left lateral component of similar to 2 mm yr(-1) north of the range and 1 mm yr(-1) south of the range. These present-day kinematics agree with geomorphologic estimated slip rates, but not the long-term deformation, corroborating the idea that the kinematics of the range have changed recently due to the change of SCB motion.;Modelling of the interseismic deformation suggests a deep locking depth on the central-western segment of the Khazar fault (similar to 30 km) in agreement with the Baladeh earthquake rupture and aftershock ranging between 10 and 30 km. Given this unusual deep locking depth and the 34 degrees dip of the thrust, a large part of the Alborz range is located above the seismically coupled part of the fault. Based on our AG measurements this part of the range seems to uplift at a rate of 1-5 mm yr(-1), in agreement with terrace uplift

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundFuture trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050.MethodsUsing forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline.FindingsIn the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]).InterpretationGlobally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions.FundingBill & Melinda Gates Foundation.</p
    corecore