52 research outputs found

    A NEW LATE PLEISTOCENE MAMMAL LOCALITY FROM WESTERN CRETE

    Get PDF
    During the last five years systematic explorations of the Natural History Museum of Crete have added more than 20 Pleistocene fossil localities around Crete to the catalogue of the over 70 already known on the Island. The new localities are distributed in all four prefectures of Crete. The most important of these is the newly discovered site of Koutalas at Cape Drepano in Western Crete. The fossil remains are found in two levels and in red cemented clays of a collapsed cave. In the upper level a rich assemblage of micromammal, bird and large mammal remains has been discovered. The large mammals consist of dwarf hippopotamus (Hippopotamus creutzburgi) and elephants (Elephas sp.). A partly articulated skeleton (vertebral column, mandible and few long bones) of a dwarf hippo has been found next to a deciduous molar of an elephantid, indicating that the two taxa probably coexisted. The micromammal remains belong to the giant Cretan mouse Kritimys catreus. Therefore, the age of the assemblage is dated to the Kritimys catreus zone and thus to the late Middle Pleistocene. In the lower level scattered remains of deers, birds and micromammals have been identified, and their age is most likely younger than that of the upper level

    Hazards and disasters in the geological and geomorphological record: a key to understanding past and future hazards and disasters

    Get PDF
    Hazards and disasters have occurred throughout Earth's History and thus the geological record is an important resource for understanding future hazards and disasters. The Earth Science Group (ESG) of the Consortium of European Taxonomic Facilities (CETAF) carried out a "Hazard and Disaster Event Survey" to identify Earth Science collections in European museums that represent hazards and disasters throughout the geological record, and recent times. The aim is to use the collections within the survey as an educational and research resource that promotes the importance of museum collections for understanding past and future hazard and disaster events. The survey pinpointed a wide variety of hazards (e.g. earthquakes, volcanism, floods, impact events, etc.), representing a vast time span in Earth's history (Proterozoic to Holocene), that are documented in the collections of the participating museums. Each hazard and disaster event has been described in terms of how they are preserved (e.g. fossil record or rock record), spatial scale, impact on life, and geological age. Here we showcase seven examples in detail which include well-known and less-known events from the survey that have contributed to our understanding of hazard and disaster processes and their impact on life. Also we present general conclusions and lessons learnt from the "Hazard and Disaster Event Survey"

    Terrestrial impact structures as geoheritage: an assessment method of their scientific value and its application to Brazil

    Get PDF
    Terrestrial impact structures are geological and geomorphological features with particular importance to understand the history and evolution of the planet. Impact structures are scattered around the world but in many countries these features are under threat, essentially due to anthropic factors. Impact structures with higher scienti c value should be considered as geological heritage and, consequently, be subjected to geoconservation strategies. In order to select the most important impact structures to be properly conserved and managed, this paper proposes a quantitative assessment method of the scienti c value of these structures. The eight Brazilian impact structures were used to test this method that has the potential to be applied to any geological context in any country. The structures known as Araguainha Dome-MT and Serra da Cangalha-TO reached a higher scienti c value, which justi es the need to develop geoconservation strategies and a proper management.The Conselho Nacional de Pesquisa e Desenvolvimento (CNPq / National Council for Research and Development) and the Programa Ciências sem Fronteiras / Science Without Borders Programme are acknowledged for the support of the postdoctoral grant No 233209/2013-1 of the 1st author. The work was co-funded by the European Union through the European Regional Development Fund, based on COMPETE 2020 (Programa Operacional da Competitividade e Internacionalização), project ICT (UID/ GEO/04683/2013) with reference POCI-01-0145- FEDER-007690 and Portuguese funds provided by Fundação para a Ciência e Tecnologia.info:eu-repo/semantics/publishedVersio

    Age constraints for the Trachilos footprints from Crete.

    Get PDF
    We present an updated time frame for the 30 m thick late Miocene sedimentary Trachilos section from the island of Crete that contains the potentially oldest hominin footprints. The section is characterized by normal magnetic polarity. New and published foraminifera biostratigraphy results suggest an age of the section within the Mediterranean biozone MMi13d, younger than ~ 6.4 Ma. Calcareous nannoplankton data from sediments exposed near Trachilos and belonging to the same sub-basin indicate deposition during calcareous nannofossil biozone CN9bB, between 6.023 and 6.727 Ma. By integrating the magneto- and biostratigraphic data we correlate the Trachilos section with normal polarity Chron C3An.1n, between 6.272 and 6.023 Ma. Using cyclostratigraphic data based on magnetic susceptibility, we constrain the Trachilos footprints age at ~ 6.05 Ma, roughly 0.35 Ma older than previously thought. Some uncertainty remains related to an inaccessible interval of ~ 8 m section and the possibility that the normal polarity might represent the slightly older Chron C3An.2n. Sediment accumulation rate and biostratigraphic arguments, however, stand against these points and favor a deposition during Chron C3An.1n
    corecore