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Abstract

Hazards and disasters have occurred throughout Earth's History and thus the geological
record is an important resource for understanding future hazards and disasters. The Earth
Science Group (ESG) of the Consortium of European Taxonomic Facilities (CETAF) carried
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out a “Hazard and Disaster Event Survey” to identify Earth Science collections in European
museums  that  represent  hazards  and  disasters throughout  the  geological  record,  and
recent times. The aim is to use the collections within the survey as an educational and
research resource that promotes the importance of museum collections for understanding
past  and  future  hazard  and  disaster  events.  The  survey  pinpointed  a  wide  variety  of
hazards (e.g. earthquakes, volcanism, floods, impact events, etc.), representing a vast time
span in Earth’s history (Proterozoic to Holocene), that are documented in the collections of
the participating museums. Each hazard and disaster event has been described in terms of
how they are preserved (e.g. fossil record or rock record), spatial scale, impact on life, and
geological age. Here we showcase seven examples in detail which include well-known and
less-known events from the survey that have contributed to our understanding of hazard
and disaster processes and their impact on life. Also we present general conclusions and
lessons learnt from the “Hazard and Disaster Event Survey”.
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Introduction

According to the Centre for Research on the Epidemiology of Disasters (2009), a hazard is
a threatening event, which can be biological (e.g. bacteria and viruses), climatological (e.g.
atmospheric processes that cause climate variability), extraterrestrial (e.g. impact events),
geological  (e.g.  volcanic  eruptions  and  earthquakes)  or  hydrological  (e.g.  floods  and
tsunamis). The definition of a disaster according to the United Nations Office for Disaster
Risk Reduction (2009) is a “serious disruption of the functioning of a community or society
involving  widespread human,  material,  economic  or  environmental  losses  and impacts,
which  exceeds  the  ability  of  the  affected  community  or  society  to  cope  using  its  own
resources.”

At  present,  there is  widespread research (IPCC 2014) indicating that  human activity  is
having  an  effect  on  the  Earth’s  climate  and  as  a  direct  result  this  is  increasing  the
frequency and magnitude of some types of hazards. Some of the likely future hazards
indicated by the International Panel of Climate Change (IPCC) include: a higher frequency
and magnitude of flood events in some regions as a result of sea level rise and storms;
increased risk of landslides/mass movement caused by heavy rainfall; extinction of many
marine  organisms  particularly  in  tropical  regions  due  to  marine  anoxia  and  ocean
acidification; and more regular heat waves and drought events.

The  frequency  and  magnitude  of  natural  processes  such  as volcanic  eruptions,
earthquakes, and tsunamis are not a consequence of climate change or human activity, but
their potential impacts are worsened due to the increasingly exposed human population
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(Huppert and Sparks 2006). This is a consequence of communities and livelihoods being
built in areas prone to these events (e.g. unstable slopes, coastal areas, living close to
volcanoes centres, etc.). The alteration of natural landscapes by human activity can also
increase  the  occurrence  of  hazards  (e.g.  deforestation  increasing  the  probability  of
landslides).

Hazards have occurred throughout Earth’s history. The geological and geomorphological
records are important resources for understanding past and future hazards and disaster
events.  Earth  scientists  are  able  to  study  the  rock  record  (sedimentology,  petrology,
geophysics and geochemistry) and the fossil record (the study of ancient fauna and flora)
to  investigate  the  processes  of  hazard  events  in  order  to  improve  forecasts  and  to
anticipate the impact on life and its recovery afterwards.

This article has been developed by the Earth Science Group (ESG) of the Consortium of
European Taxonomic Facilities (CETAF). The ESG consists of multiple museums and other
research institutions within Europe, and its main purpose is to promote the importance of
Earth Science collections in facilitating a better understanding and forecasting of current
environmental and biodiversity issues. To help fulfil  this purpose the ESG carried out a
“Hazard  and  Disaster  Event  Survey”  (presented  in  Suppl.  material  1)  to  identify  Earth
Science collections within its institutes that allow the study of causes and effects of hazards
and disasters through geological  time.  The aim of  the survey is  to  use the collections
documented as a resource for educational and research purposes, for instance:

1. Increase  awareness  amongst  the  general  public  about  hazards  and  how  the
geological and geomorphological records can be used to understand their impacts,
and help learn lessons for the future.

2. To facilitate collaboration between researchers working on such events and help
improve the robustness of existing data and models.

The  “Hazard  and  Disaster  Event  Survey”  includes  a  wide  variety  of  events  that  have
affected  Earth  at  different  geographical  scales  (local,  regional  and  global)  such  as
earthquakes,  tsunamis,  flooding,  marine anoxia,  volcanic eruptions and landslides.  The
geological age of the different hazards recorded in the survey spans an interval from the
Proterozoic (2500 to 541 million years ago) to the Holocene (11,700 years to present day).
Here we showcase a small number of hazard and disaster events including well-known and
less-known ones recorded in  the survey that  have contributed to  our  understanding of
hazard processes and their impact on life. A summary table of the “Hazard and Disaster
Event Survey” is presented at the end of this article in the conclusions. It should be noted
that  this  publication  demonstrates  the potential  of  museum  collections,  and  that  the
“Hazard and Disaster Event Survey” is an incomplete record but will continue to expand.

Fig. 1 is a visualisation of the main types of hazards and disasters documented in the
survey and how they are  preserved in  the  geological  record,  the  relationship  between
geographical scales at which they can occur, event duration, and magnitude of destruction
to life.
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Explanation of hazards mentioned

Volcanic  eruption  events:  There  are  two  main  types  of  volcanic  eruptions  that  have
different hazards associated with them:

Explosive (e.g. Plinian and Vulcanian): These types of volcanic eruptions characteristically
associated with evolved viscous magmas (e.g. andesitic and rhyolitic) with a high content
of  trapped volatiles,  and when these magmas degas they produce explosive eruptions
often projecting material into the stratosphere (Ball  2008, Nelson 2015). The volcanoes
with this kind of magma and eruption style tend to be steep sided and occur in the vicinities
of subduction zones (e.g. Andes volcanic belt, Chile/Argentina) (Stern 2004). Associated
hazards include pyroclastic fallouts, pyroclastic flows, lahars (occur during and after the
eruption and are similar to mud and debris flows, they consist of a mixture of water and
loose volcanic derived material, organic material, man-made objects), rock ejection (e.g.
pumice, hot rock fragments), and the release of poisonous gases (including CO ).

Non-explosive (e.g. Hawaiian, deep water submarine and Flood Volcanism): These types
of eruptions are characterised by the outpouring of low viscosity magma (basaltic). Two
examples of currently active volcanoes are Kilauea (Hawaii) and Nyiragongo (Democratic
Republic  of  the  Congo)  (Barrière  et  al.  2018,  United  States  Geological  Survey  2018,
Wauthier et al. 2012). A common example of basaltic volcanism is at mid-ocean ridges
where magma is erupted to the Earth's surface and forms new ocean floor (Ball 2008). In
Earth’s past there have been flood basalt  events, where very large volumes of magma
have been erupted usually during times of increased continental drift  (e.g. the Siberian
Traps – Permian/Triassic boundary).  These flood volcanism events are thought to have
caused climate change and mass extinctions (Bond and Wignall 2014). Overall hazards of
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Figure 1.  

Visualisation of the different types of hazards and disasters documented in the “Hazard and
Disaster Event Survey”.
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non-explosive  events  include  the  direct  effect  of  hot  lava  flows,  fire  fountains  and  the
release of poisonous gases (including CO ).

Flood events: The definition of a flood is “an overflow of a large amount of water beyond
its  normal  limits  especially  over  what  is  normally  dry  land,”  (English  Oxford  Living
Dictionaries 2018). A flood event can occur in the vicinity of lakes, rivers and oceans, and
they can be fast occurring (within a few hours) or gradual events (over years). Fast initiated
flood events are sometimes called flash floods and can be the result of heavy rainfall or the
failure  of  dams  (natural  or  man-made) (Kvočka  et  al.  2016).  An  example,  of  gradual
flooding is sea-level rise, which can flood low-lying land and can be caused by thermal
expansion of the the ocean floor or melting of continental ice caps due to global warming
(IPCC 2014, Kvočka et al. 2016).

Impact event: “A type of extraterrestrial hazard caused by the collision of the Earth with a
meteoroid,  asteroid  or  comet”  (Centre  for  Research  on  the  Epidemiology  of  Disasters
2009). Extraterrestrial projectiles vary in size, from very small (a few millimeters) to very
large  (e.g.  the  one  that  was  likely  to  have  caused  the  Cretaceous/Paleocene  mass
extinction is thought to have been approximately 9 km in diameter) (Kaiho and Oshima
2017, Arizona State University Center for Meteorite Studies 2018).

Salinity crisis: Occurs in bodies of water that are landlocked, without a continuous influx
of fresh water and were evaporation exceeds inflow rate. This may result in the body of
water becoming hypersaline (water with a higher salinity than sea water, and deposition of
salt deposits) (Krijgsman et al. 1999, McGenity and Oren 2012). A modern example of a
hypersaline basin is the Dead Sea (McGenity and Oren 2012).

Marine anoxia:  Marine anoxic  events occur  when there is  an absence or  low level  of
oxygen in the water column, this can be due to sluggish ocean circulation during times of
warmer climates where the deep ocean is not  ventilated by the sinking of  oxygen rich
surface waters (Keeling et al. 2010, Bond and Grasby 2017). They can also be caused by
an increased influx of  nutrients from the  continent  leading to  increased productivity  of
marine organisms and thus high oxygen consumption during the decay of organic matter.

Local and regional scale hazards and disasters

A local scale hazard/disaster event is defined here as one that affects a small geographical
area (e.g. the size of a village, town or city). Whereas a regional scale hazard/disaster
event affects a larger geographical area (e.g. a country or continent). Local and regional
scale hazards/disasters of different types have been documented in the survey (see Suppl.
material  1).  Regional  hazard/disaster  events  include:  earthquakes,  impacts,  tsunamis,
marine anoxia and salinity events. These different types of events are preserved in either
the rock record or the fossil record, or both. For instance, impacts caused by extraterrestrial
projectiles can be preserved in both records, in the rock record in the form of craters in the
landscape, impact tektites and shocked quartz, etc.; or recorded in the fossil record by the
destruction they have caused to life (e.g. inferred from plant remains, fossil vertebrate and
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invertebrate record).  Another example is volcanic activity  which is recorded in the rock
record as pumice, ash layers, and lava flows but can also be represented by, for example,
charcoalified  plant  remains.  Evidence  from the  collections  indicate  that  some  regional
hazards have not caused extreme destruction to life and the environment, but instead have
created new habitats and helped initiate the evolution of new species. Below are more
detailed examples (from the surveyed collections) of regional hazards/disaster events: two
volcanic events, a flood event, two impact events, and a salinity crisis along with photos of
museum collection specimens. Also other examples of less well-known local and regional
events are given for each hazard/disaster type mentioned.

Flood events

Bükkábrány drowned forest 

Age: 7 million years ago, Miocene (Kázmér 2008)

Modern location of event: Bükkábrány, north eastern Hungary

Location  of  collection:  Hungarian  Natural  History  Museum,  Visitor  Center  of  the
Ipolytarnóc Fossils Nature Reserve

Preservation type: Palaeontology, fossil plants – tree stumps, fruits, seeds and leaves

Duration of event: Hundreds of years (Gross et al. 2011)

Impact on life: The rising water level of Lake Pannon drowned the swamp forests that
grew around its edge.

Background story: The Bükkábrány fossil forest is considered to be unique because it is
the oldest forest preserved in situ (life position) (Fig. 2),  in which the wood of the tree
stumps is still preserved in organic form, instead of petrified (organic material replaced by
minerals)Kázmér (2008), Császár et al. (2009). The fossil forest was discovered when the
area was exploited for lignite. Around 16 tree stumps were excavated in an area of 50 by
100 m. The basal diameters of the tree trunks range from 1.8 to 3.6 m and they have a
maximum height of 6 m Kázmér (2008), Császár et al. (2009).

The fossil tree trunks are the remains of a warm temperate swamp forest that consisted of
mainly large coniferous trees (tree types: Glyptostrobus and Taxodium) (Erdei et al. 2009,
Gryc and Sakala 2010). The forest was situated on the northern margin of an extensive
ancient lake called Lake Pannon (Fig. 3). The forest is thought to have been similar to
present day Taxodium forests in southeastern United States (Erdei  and Magyari  2011).
Around 7.5 million years ago the water level of Lake Pannon increased rapidly, and the
marginal areas around the lake were flooded, which resulted in the drowning of the swamp
forest (Kázmér 2008). The lower 6 m of the trees were covered by fine grey sands that
filled  cracks  in  the  wood  and  prevented  exposure  to  oxygen  and  thus  bacterial
decomposition (Kázmér 2008). Based on studies of the lake sediments the rising water
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level may have been caused by astronomically induced climate cycles (Milankovitch Cycle)
or tectonics (Kázmér 2008, Gross et al. 2011).

 

 

Figure 2.  

The in situ tree stumps excavated in the lignite mine at Bükkábrány. Photo courtesy of B.
Erdei, Hungarian Natural History Museum.

 

Figure 3.  

A map showing the extent of Lake Pannon during the late Miocene and the location of the
Bükkábrány forest which is highlighted by a red square. Modified from Magyar et al. (1999).
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These fossil tree stumps are a valuable tool for reconstructing the ancient swamp forest
ecology and the climate conditions under which it occurred through the study of the wood
anatomy  (e.g.  tree  ring  analysis)  (Kázmér  2008).  This  may  help  gain  insight  into
environmental conditions before and during the water level rise of Lake Pannon and could
help to better understand what triggered the event.

Other examples of local and regional scale flood events 

• A  mammal  collection  (including  a  human  cranium  of  Homo  steinheimensis)  of
Pleistocene age, originating from Germany (stratigraphy: Holstein Interglacial and
Riss Glacial Stage), and housed at the State Museum of Natural History Stuttgart.

• A vertebrate collection of late Miocene age, originating from Baltavár (Hungary),
and housed at the Hungarian Natural History Museum.

Impact events (extraterrestrial projectiles)

Ries and Steinheim impact events 

Age: 14.808 ±0.021 million years ago, Miocene (Schmieder et al. 2018)

Modern location of event: Ries: Nördlinger Ries, Bayern Baden-Württemberg, Germany;
Steinheim: Swabian Alb, Bayern and Baden-Württemberg, Germany

Location of collection:  Ries:  Museum für  Naturkunde Berlin,  Natural  History Museum
Vienna;  Steinheim:  Museum  für  Naturkunde  Berlin,  State  Museum  of  Natural  History
Stuttgart, Natural History Museum Vienna

Preservation type: Ries: formation of a crater, impactites (lithic impact breccias, suevites,
impact melt rocks, glass bomb, shatter cones and tektites), shock metamorphism of rocks
and minerals (e.g. formation of high pressure phases, coesite, stishovite, diamond), lake
sediments. Steinheim: formation of a crater, impactites (lithic impact breccias and shatter
cones), ancient lake sediments, fossil fauna and flora.

Duration of event: The effect of the impacts were instant.

Impact on life: Both impacts only affected life that lived in close proximity to the target
areas and presumably did not cause any species extinctions, and life recovered quickly
afterwards (within decades) (Böhme et al. 2002).

Background story:

Geological significance 

The Ries  and Steinheim impact  events  occurred 14.8  million  years  ago (Buchner  and
Schmieder 2015). The impact structures are still preserved today. They are approximately
46 km apart, and aligned in a near NE – SW direction (see Fig. 4) (Miljković et al. 2013).
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Based on these observations it has been suggested that the two projectiles were orbiting
each other before entering the Earth’s atmosphere and then hit the two locations (Stöffler
et al. 2002, Miljković et al. 2013). There are differences in how the two impact events are
preserved with regards to crater shape (geomorphology),  and the presence/absence of
other  geological  features  that  are  diagnostic  of  impacts  such  as  ejecta  blankets  (lithic
breccias and suevite), distal ejecta (tektites), and shatter cone structures in the target rocks
(Figs  5,  6,  7)  (Stöffler  et  al.  2002,  Rasser  2014,  Buchner  and  Schmieder  2015).  The
differences in crater diameter (24 km for Ries and 3.8 km for Steinheim) of the two impact
events are the result of different projectile sizes; the one that hit Steinheim being much
smaller (Stöffler et al. 2002). In both target areas the rock is composed of sedimentary
strata (mainly porous limestone) underlain by a crystalline basement (e.g. hard granitic
rocks) (Stöffler et al. 2002, Rasser 2014, Buchner and Schmieder 2015). The Steinheim
crater has a central uplift (a hill structure formed by the rebound of the target rock shortly
after the impact) whereas at Ries the central uplift  has collapsed forming an inner ring
within the crater basin (Stöffler et al. 2002, Buchner and Schmieder 2015). The Ries impact
is famous because the ejecta blanket and distal ejecta (tektite strewn field) are extensively
preserved, they cover an area of 200 to 450 km  and fan outwards from the crater in an
east-northeast  direction  (Stöffler  et  al.  2002,  Buchner  and  Schmieder  2015).  This
widespread evidence has allowed scientists to reconstruct the likely velocity and angle of
the Ries impact (Stöffler et al. 2002, Miljković et al. 2013). In contrast, the Steinheim crater
shows no ejecta blanket, which is likely due to a higher degree of erosion in this area.

2

 
Figure 4.  

Satellite image of the Ries and Steinheim craters. From Buchner and Schmieder (2015).
 

Hazards and disasters in the geological and geomorphological record: a ... 9

https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4735859
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4735859
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4735859
https://doi.org/10.3897/rio.5.e34087.figure4
https://doi.org/10.3897/rio.5.e34087.figure4
https://doi.org/10.3897/rio.5.e34087.figure4


 

 

Figure 5.  

Suevite specimen from the Ries impact event, collected from a suevite deposit that is part of
the ejecta blanket about 4 km east of the crater rim. Suevite is a rock type that consists of
larger angular target rock fragments surrounded by a matrix of smaller fragments and grains
that have been melted and recrystallised due to pressures caused by the impact. Specimen
size:  27×15×0.5  cm.  Museum  für  Naturkunde  Berlin  collection  [Inventory  number  MFN_
PET_2008_02386], collected by M. Siebenschock, 1997, photo by R. T. Schmitt.

 

Figure 6.  

A tektite that originates from the distal ejecta (strewn field) of the Ries impact, found in the
Czech Republic. Tektites from the Ries impact are called moldavites. Ruler at the bottom of
the image = 6.6 cm [Inventory number NHMV_J677]. Photo courtesy of L. Ferrière, Natural
History Museum Vienna.
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Palaeontological significance 

The target areas were rich with forests and fauna (Böhme et al. 2002). According to Böhme
et al. (2002) life was only effected close to the impact sites with no extinction of species.
Life is likely to have recovered quickly (within decades) (Böhme et al.  2002). The flora
surrounding the Steinheim crater has been most recently described by Kovar-Eder and
Schweigert (2018). However, the interesting story is not necessarily how the two impact
events themselves affected life but rather how they helped initiate new habitats and life
afterwards.

During the middle Miocene, lakes formed within the impact craters and they became an
ideal habitat for fish, ostracods and snails. In the case of Steinheim many were endemic to
the lake (Rasser 2014). Today the remains of these organisms are preserved within the
lake sediments that fill the craters. The Steinheim crater became famous through the early
studies by Hilgendorf (1863) and Hilgendorf (1867) on the gastropods preserved in the
layers of lake sediments. These are an important contribution to our understanding of the
processes of evolution, speciation and endemism (Rasser 2014). Franz Hilgendorf studied
the lake sediments from the lowermost units to the top (i.e. from the oldest to the youngest
sediments) and found that shell morphology changed through the different layers. Based
on these observations and further analyses he classified the snails into species based on

 
Figure 7.  

Melt bomb specimens. Top image: a complete specimen with typical surface features; bottom
image: section of a bomb showing flow texture and numerous vesicles (Aumühle quarry, Ries
impact  structure)  [Inventory numbers NHMV_J3852 & NHMV_O423];  Photo courtesy of  L.
Ferrière, Natural History Museum Vienna.
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their shell morphology and produced the first ever palaeontological evolutionary tree for
them. This evolutionary tree supported Darwin’s theory on the origin of species (i.e. all
species  have  descended  from  a  common  ancestor)  (Figs  8,  9)  (Rasser  2013).  The
Steinheim gastropod species evolved from a single non-endemic species from the genus
Gyraulus (a form called aequeumbilicatus by Hilgendorf, now called Gyraulus kleini).

The factors/processes which caused endemism, and evolution of the snails in the ancient
lake are still  largely unknown. Evolution of the gastropods may have been triggered by
environmental  changes in the lake such as water  level  and chemical  changes (Rasser
2014). From recent studies, Rasser and Covich (2014), predation holes have been found in

 

 

Figure 8.  

A re-drawn version of Hilgendorf’s original evolutionary tree of the Steinheim snail  species
(genus: Gyraulus). Image from Rasser (2014).

 

Figure 9.  

Fossil  snail  species from Steinheim. Photo taken by M. Rasser,  State Museum of  Natural
History Stuttgart.
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some snail  shells and thus predator-prey interaction may have been one of the driving
forces for  their  evolution.  In terms of  endemism one explanation is that  migration from
outside the lake could not take place due to ecological niches being already occupied.

Other examples of local and regional scale impact events 

• Impactite collection of Eocene age, originating from Popigai (Russia) and housed at
the Museum für Naturkunde Berlin.

• Impact collection (proximal) of Late Triassic age (206.9 million years), originating
from Rochechouart (France) and housed at the Natural History Museum Vienna.

• Impactite collection (distal  -  tektites) of  Pleistocene age (0.77-0.78 million year),
originating  from the  Australasian  strewnfield  and  housed  at  the  Natural  History
Museum Vienna.

Volcanic events

Santorini volcanic eruption 

Age: 1614 ±30 B.C., Holocene (Friedrich 2006)

Modern location of event: Santorini, Greece

Location of collection: Natural History Museum Crete

Preservation type: Fossil flora – olive leaves and branches, volcaniclastic rock

Duration of event: Days/hours

Impact  on  life:  The  Minoan  civilisation  was  destroyed  by  a  tsunami  triggered  by  the
collapse of the volcano sides.

Background story:  The Santorini  eruption is considered as one of the most violent in
historic times, 10 times bigger than Krakatau (1883) in Indonesia. The Volcanic Explosively
Index (VEI) for this eruption is estimated at 7 which makes the Santorini eruption one of the
largest in the last 20,000 years (Heiken and McCoy 1984). The eruption totally destroyed
Santorini Island (or Strongili as it was known then), and created the present-day caldera. It
also triggered a devastating tsunami that affected the central and eastern Mediterranean
(Heiken and McCoy 1984).

Based on archaeological findings and relative dating, the eruption was for many decades
considered to have happened around 1450-1500 B.C., and thus was considered the main
reason for simultaneous collapse of the famous Minoan Civilisation and the destruction of
its palaces (Friedrich 2006).

The  finding  of  fossilised  leaves  and  branches  of  olive  trees  (Fig.  10)  among  the  ash
deposits from the eruption on Santorini Island permitted radiocarbon dating, which gave a
new age for the eruption at about 1614 ±30 B.C. Based on this new dating, the majority of
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scientists  believe that  the  consequences of  the  natural  disaster  following the  Santorini
Eruption  and  especially  the  tsunami,  were  responsible  for  the  gradual  collapse  of  the
Minoan Civilization, which happened 150 years later with final destruction (due to other
reasons) of its palaces (Friedrich 2006)

Analysis  of  the  volcaniclastic  rock  units  in  which  the  olive  leaves  are  preserved  are
important for understanding the processes and phases involved in the Santorini Eruption
(Fig. 10). It has been estimated that the eruptive volume of ash was around 39 km , based
on  the  thickness  of  the  volcaniclastic  layers  (Dominey-Howes  and  Minos-Minopoulos
2004). Scientists have studied the different volcanic rock units deposited from the eruption
on the surrounding islands, in terms of the thickness of the layers, composition (pumice,
ash and pyroclastic) and grain size (Friedrich 2013). They indicate at least three eruption
phases, each with different hazards associated with them. The three different phases of the
eruption were caused by changes in the morphology of the volcanic vent, the interaction of
the magma with sea water, and the collapse of the roof of the volcano to form the caldera
(Friedrich 2013). For example, the first phase of the eruption was explosive and sent an
ash cloud into the stratosphere. During the second phase the magma interacted with water
causing  violent  explosions.  Reconstructing  these  different  eruptive  phases  has  been
informative for disaster mitigation planners with regards to mapping out potential hazard
zones, as well as raising awareness amongst policy makers and residents of the islands
about possible future eruption scenarios (Dominey-Howes and Minos-Minopoulos 2004).

 

3

Figure 10.  

Fossil  olive  leaves preserved within  volcaniclastic  rock  from the Santorini  eruption.  Image
courtesy of the Natural History Museum of Crete.
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Carboniferous Plinian type eruption 

Age:  Pennsylvannian (323.2 ̶  298.9 million years ago),  Carboniferous (Sternberg 1820,
Mašek 1973)

Modern location of event: Radnice, Central Czech Republic

Location of collection: Natural History Museum Prague

Preservation type: Palaeontological, fossil flora, volcanic ash layers

Duration of event: Days

Impact on life: A swamp forest close to the volcanic center was destroyed as a result of
being covered by ash.

Background story:  The  Lower  Radnice  Coal  horizon  contains  well  preserved  swamp
vegetation and it is overlain by a 40–60 cm thick layer of coarse volcaniclastic sediments
(containing a lot of feldspar) (Opluštil et al. 2009b, Opluštil et al. 2014, Sternberg 1820).
This sediment is interpreted as being derived from a catastrophic volcanic eruption (Plinian
type) during the Carboniferous Opluštil et al. (2009a), Sternberg (1820), Mašek (1973). The
key characteristics of the eruption include ejection of a large amount of ash and pumice by
continuous powerful gas-driven eruptions. Volcanic debris and hot gases were also ejected
high  into  the  stratosphere.  The volcanic  center  is  called  the  Altenberg-Teplice  Caldera
(ATC), it was a part of the Bohemian Massif and the largest known volcanic center in the
region during the late Palaeozoic Mlčoch and Skácelová 2010. Remains of this volcano are
preserved as porphyry dykes of granitic composition situated in areas between Teplice and
Dresden  near  to  Altenberg  in  the  eastern  Krušné  Hory  Mountains/Erzgebirge  (on  the
border between the Czech Republic and Germany) (Mlčoch and Skácelová (2010). The
high  volume  of  ash  compacted  the  vegetation  and  thus  allowed  for  the  excellent
preservation of pre-eruption vegetation of the tropical coal swamp. More than 20 whole-
plant  species  were  detected  and  palaeo-ecologically  interpreted  (Opluštil  et  al.  2009a,
Opluštil et al. 2009b, Opluštil et al. 2014). Among them a number of famous genera such
as Lepidodendron (Fig. 11) have been described by Sternberg (1820). His work “Versuch
einer geognostisch-botanischen Dararstellung der Flora der Vorwelt” is now considered as
the foundation of modern palaeobotany.

Other examples of local and regional scale volcanic events 

• A recent study by Petrone et al. (2016) (Natural History Museum London) on the
chemical analysis of zoned crystals within igneous rock from Stromboli (Italy) has
helped further the understanding of pre-eruptive magmatic processes, which is an
important  step  towards  being  able  to  predict  volcanic  eruptions  in  the  future.
Although the paper does not mention museum collections it is an example of how
museum archived rock samples could be re-studied using new techniques (Pers
Comm. G. Miller, April 2018).
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• Regional rock collections of Quaternary age (regional scale event), originating from
Campi  Flegrei,  Vesuvius/Monte  Somme  (Italy),  housed  at  the  Museum  für
Naturkunde Berlin (Germany).

• Plant fossils, of early Miocene age (local scale event), originating from Ipolytarnóc
(Hungary), housed at the Hungarian Natural History Museum.

• The Royal Museum for Central Africa (Belgium) is studying the eruptive history of
the  Nyamulagira  and  Nyiragongo  volcanoes  located  close  to  Goma  city
(Democratic Republic of Congo), at the border with Rwanda. Intensive field work
and  radiocarbon  dating  of  rock  samples  from  the  museum’s  Earth  science
collection provided new evidence of the explosive activity of some volcanic cones
identified in the region (Smets et al. 2013, Smets et al. 2015, Poppe et al. 2016).

Salinity crisis event

Messinian salinity crisis 

Age: Messinian (7.2–5.3 million years ago), Miocene (Krijgsman et al. 1999)

Modern location of event: Mediterranean Sea

 
Figure 11.  

Lepidodendron lycopodioides, terminal branch, Přívětice excavation season 2003, Photo taken
by J. Dašková 2003, Natural History Museum Prague.
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Location of collection: Natural History Museum Crete

Preservation  type:  Palaeontology  (marine  and  terrestrial  organisms),  mineralogical
(evaporite minerals)

Duration of event: 600,000 years

Impact  on  life:  Extinction  of  marine  organisms,  turnover  of  terrestrial  fauna.  The
collections identified here only show evidence of life prior to the event.

Background story: The Messinian is the last stage of the Miocene Epoch, which lasted
from 7.2 to 5.33 million years ago. For the Mediterranean this period is related to one of the
most catastrophic geological and meteorological events, the Messinian salinity crisis, which
was caused by the isolation of the basin from the Atlantic Ocean (Harzhauser et al. 2007).

Following the closure of the marine connections to the Indian Ocean in the early Miocene
(Harzhauser et al. 2007), the Mediterranean Sea was entirely separated from the world’s
oceans during the late Miocene, around 5.96 million years ago. Tectonic processes closed
the  last  connections  with  the  Atlantic  in  southern  Iberia  and  north-western  Africa,
transforming  the  Mediterranean  into  a  huge  lake,  similar to  the  Caspian  Sea  today
(Spakman and Wortel 2004). For more than half a million years the Mediterranean suffered
from intense evaporation, which was not completely compensated by the influx of fresh
water  from the river  systems of  the surrounding land masses and thus resulted in the
deposition of evaporites such as rock salt, gypsum, and anhydrite. Large parts of the basin
dried out completely while others became salt lakes, occasionally topped up by an upper
layer of fresh to brackish water from fluvial runoff. Life in and around the Mediterranean
Sea was strongly affected. The marine fauna and flora was severely diminished, although
extinctions vary among taxa, ranging from 5–40% (Berning 2006). In the terrestrial realm,
acidification and sudden geographic changes led to a faunal turnover in land mammals
(Alcover 2000). While desert conditions in the Mediterranean region caused extinctions of
local faunas, African mammals made use of the newly existing land bridges to migrate
northwards, replacing established species (van der Made et al. 2006, Domingo et al. 2014).
Rise of the Mediterranean sea-level, due to flooding, then geographically isolated terrestrial
species that survived the Messinian salinity crisis, leading to the evolution of new taxa.

The crisis ended 5.33 million years ago when new straits opened in the Gibraltar area and
a  huge  flooding  event  took  place.  Nowadays  evaporitic  minerals  dating  back  to  the
Messinian salinity crisis can be found in Crete (Fig. 12) as well as in many other islands
and peripheral regions of the Mediterranean. Likewise, they are preserved on the sea floor
across the Mediterranean (Krijgsman et  al.  1999).  The evaporite deposits represent 50
times the mineral content than is contained in the water of the modern day Mediterranean
Sea. It is therefore estimated that during the crisis the Mediterranean Sea faced several
cycles of evaporation and refilling from the Atlantic (Krijgsman et al.  1999). The causal
mechanisms of these cycles are still open to scientific debate.
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Global scale hazards and disasters

Global  events  recorded  in  the  CETAF  members’  collections  include,  impact  events,
volcanism, and marine anoxia (see Suppl. material 1). These types of events often resulted
in mass extinction and/or a transition in global climate and environments. For instance, at
66  million  years  ago  (Cretaceous/Paleocene  boundary)  a  large  impact  caused  global
climate  change  and  marine  anoxia  resulting  in  the  breakdown  of  biological  systems
(Alvarez  et  al.  1980,  Bond  and  Grasby  2017).  At  the  Permian/Triassic  boundary  (252
million years ago) there was widespread marine anoxia due to rapid global warming which
may have been caused by large scale volcanism in Siberia (Bond and Wignall 2014, Bond
and Grasby 2017). Below are detailed examples of two global events. In the “Hazard and
Disaster Event Survey” climate change and mass extinction have been entered as types of
global hazards.

Marine anoxia event

Carnian pluvial episode (CPE) 

Age: Carnian (237–228.4 million years ago), Triassic (Dal Corso et al. 2015)

Modern location of event: Aşağiyaylabel locality–Taurus Mountains, southwest Turkey

Location of collection: Natural History Museum Vienna

Preservation type: Fossils – mass ammonite assemblages

 
Figure 12.  

A specimen of gypsum from the Messinian Salinity Crisis, found in Crete. Image courtesy of
the Natural History Museum of Crete.
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Duration of Event: Millions of years (Ruffell et al. 2015)

Impact on Life: The CPE caused widespread anoxic conditions in the oceans and thus
caused widespread mortality of marine organisms in particular reef forming organisms (Dal
Corso et al. 2015).

Background Story: The Carnian Pluvial Episode (CPE) refers to a time of global climate
change from arid conditions that characterised most of the Triassic to high humidity and
mega-monsoonal conditions (Dal Corso et al. 2015). During the Triassic the landmasses
were amalgamated into a supercontinent called Pangaea. An intercontinental sea, called
the Tethys, was situated between the Laurasian and Gondwanan domains of the super-
continent (Fig. 13, Dal Corso et al. 2015). One possible cause of the CPE may have been
a large volume of  CO  being injected into the atmosphere due to flood volcanism that
occurred as  a  result  of  ocean floor  spreading during  the  opening of  the  southwestern
domain of  the Tethys region. The effects on the fauna and flora were widespread with
extinctions both in the terrestrial and marine realm. In particular, the event was associated
with widespread marine anoxia across the Tethys region. This was likely a consequence of
heavy rainfall increasing weathering and the transport of nutrients from the land into the
ocean, thus increasing the productivity of marine organisms and oxygen uptake. There was
also a demise in carbonate platform production by reef forming communities and this was
likely to have been caused by acidification of the oceans as a result of volcanism (CO ) and
marine anoxia (Dal Corso et al. 2015, Bond and Grasby 2017).

Fig.  14  shows  a  mass  assemblage  of  fossil  ammonites  (Kasimlarceltites)  from  a
sedimentary succession in southern Turkey (Aşağiyaylabel) of early to late Carnian age
(Lukeneder  et  al.  2012,  Lukeneder  and Mayrhofer  2014).  The sedimentary  succession
represents the breakdown of a carbonate platform within the western Tethys with lower rock
units representing shallow carbonates that are overlain by deep marine black carbonates,

2

2

 
Figure 13.  

Position of the continents configuration during the Carnian. Modified from Scotese (2014).
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shales and siliciclastic material. The mass ammonite beds occur within the black carbonate
units and extensive research revealed that they contain 100 million specimens all belonging
to the same species (Lukeneder and Mayrhofer 2014). The ammonite mass assemblage is
not the result of mass mortality directly caused by CPE, as they predate it. Studies on the
orientation of the ammonites and dip of the rock units in which they are contained have
been useful for understanding how climate change can cause changes in sedimentation
and the preservation of fossils on continental shelves. The ammonites were deposited on
the continental shelf in shallow marine conditions but then they were transported to deeper
marine settings by debris  flows/gravity  flows which were a common occurrence due to
tectonic  activity  in  the  region  and/or  high  frequency  of  storms  during  the  monsoonal
conditions of the Carnian (Lukeneder and Mayrhofer 2014).

Other examples of global scale marine anoxia events 

• Collection of Mesozoic vertebrates, including fishes of Carnian age (237–228.4
million years ago), Triassic, originating from Raibl in Austria, housed e.g. at the
State Museum of Natural History Stuttgart.

• Conodont  collections  of  Late  Devonian  age  (383–359  million  years  ago),
housed at Senckenberg Institute, Frankfurt.

• Collection of Mesozoic vertebrate samples of Toarcian age (183–174 million
years ago), Jurassic, housed at the State Museum of Natural History Stuttgart.

 
Figure 14.  

A mass occurrence of the ammonite Kasimlarceltites from the Aşağiyaylabel locality. Photo
taken by A. Lukeneder, Natural History Museum Vienna.
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Impact events (extraterrestrial projectiles)

Cretaceous/Paleocene impact event (Chicxulub) 

Age: 66 million years ago, Cretaceous/Paleocene (Bond and Grasby 2017)

Modern location of event: Impact location: Chicxulub, Yucatan, Mexico; knock-on effects
were global

Location of collection: Museum für Naturkunde Berlin, Natural History Museum Vienna,
Swedish Museum of Natural History, Natural History Museum London, National Museum of
Natural Science Madrid

Preservation type:  Formation of  a  crater,  ca.  180 km in  diameter  (buried by  younger
sediments),  impactites  in  the  crater  (Fig.  15)  and  ejecta  blanket,  global  ash  fall  bed
including shocked minerals and Iridium anomaly, fossil organisms (see Suppl. material 1).

Duration  of  event:  The  aftermath  effects  of  the  impact  possibly  lasted  hundreds  to
thousands of years.

Impact on life: Around 76% animal species (land and marine) became extinct (Sole and
Newman 1999).

Background story: The Cretaceous/Paleocene impact event is associated with one of the
most  well-known  extinction  events  in  Earth’s  history  because a  substantial  number  of
organisms on Earth became extinct, including the dinosaurs (Alvarez et al. 1980, Sole and
Newman 1999, Kring 2007, Bond and Grasby 2017). The crater from this impact is situated
on the Yucatan Peninsula, Mexico, is 180 km in diameter and the majority of it is under the
ocean (Kring 2007). There is an ongoing debate amongst the Earth science community on
whether the impact was capable of causing such devastation to life, or whether life was

 
Figure 15.  

Suevite specimen from ICDP – drill core Yaxcopoil-1 (2001–2002), depth 889.51 m, Chixulub
impact crater, Yucatan peninsula, Mexico. The suevite consists of melted and recrystallised
fragments  of  the  target  rock.  Specimen  length  9.5  cm.  Museum  für  Naturkunde  Berlin
collection [Inventory number MFN_PET_2008_00058], photo by R. T. Schmitt.
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already stressed due to climate change caused by contemporary flood volcanism (Bond
and Grasby 2017). In order to address this problem there has been extensive research on
the  crater  morphology  and  the  target  rocks.  The  target  rock  types  are  a  crystalline
basement  overlain  by  porous  carbonates  (limestones)  and  evaporites  (anhydrite  and
gypsum) (Fig.  16).  When the projectile  hit  the target,  carbonates and sulphates of  the
sedimentary strata were vaporised, and gases (carbon and sulphur oxides) were released
into the atmosphere along with dust.

There was an initial cooling phase that was caused by sulphate gases and dust prohibiting
penetration of  sunlight,  and as a result  primary food producers like plants  and marine
plankton could not photosynthesise, leading to the collapse of the food chain (Kring 2007).
A computer model study based on research of the crater rocks and the size of the projectile
indicated that the cooling could have lasted for decades and global temperatures may have
dropped by 27˚C (Brugger et al. 2017).

Other examples of global scale impact events 

• Core samples from the Sudbury Impact Structure (1849 million years old, Davis
2008); ca. 260 km max. diameter originally, Planetary and Space Science Centre
(2018), housed e.g. at the University of Hamburg (Institute of Geology).

• Impactite collection from the Vredefort Impact Structure (2023 ±4 million years old,
Kamo  et  al.  (1996);  ca.  160 km  diameter  today  [ca.  250  ̶  300  km  originally],
Planetary  and  Space  Science  Centre  (2018),  housed  at  the  Museum  für
Naturkunde Berlin and the Natural History Museum Vienna.

 
Figure 16.  

Anhydrite  specimen,  ICDP-drill  core  Yaxcopoil-1  (2001-2002)  depth  1376.11  m,  Chicxulub
impact crater, Yucatan Peninsula, Mexico. Specimen length 2 cm. Museum für Naturkunde
Berlin collection [Inventory number MFN_PET_2008_00133], photo by R. T. Schmitt.
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Conclusions/what lessons can we learn for the future

The “Hazard and Disaster Events Survey”, which is summarised as a table below, reveals a
wide range of different hazard and disaster event types recorded in the geological record
that are documented in museum collections. This review presents seven exemplar hazard
and disaster events detailing their location, duration, geographical scale, impact on life, and
causal mechanisms if  known. It  highlights the potential value of studying the geological
record for furthering our understanding of the causes and impacts of hazards and disasters
at different geographical scales (regional and global scale). Furthermore it emphasises the
importance  of  museum collections  as  a  resource  for  hazard  event  research.  Museum
collections contain unique rock and fossil samples that have been archived from localities
that are sometimes no longer accessible or may not be in the future; thus they allow the
continued study of past hazard events and have the potential for new data to be obtained.
Below are listed the conclusions and future lessons derived from the “Hazard and Disaster
Event Survey” (presented in Suppl. material 1):

• The  fossil  and  rock  record  can  be  useful  in  constraining  dates  when  events
occurred and thus help distinguish consequences of the hazards and disasters. For
example, olive leaves and branches preserved during the Santorini eruption event
helped constrain  the date of  the eruption,  and that  it  triggered a tsunamis that
initiated the demise of the Minoan civilisation.

• Fossils  can  be  useful  tools  for  investigating  causal  mechanisms of  events.  For
instance  potential  environmental  causes  of  the  Bükkábrány  flood  event (e.g.
climatic or tectonic) may in future be clarified by studying the climate signals stored
in the fossil wood anatomy (e.g. growth ring analysis).

• In many cases regardless of  the geographical  scale of  an event,  life is  present
before and afterwards, however the type of life present might have changed (e.g.
different plant species).

• Not all hazards in Earth’s history have caused massive destruction to life; in some
cases they have helped biodiversity and species evolution. The Steinheim impact
event created a crater in which a long lasting lake developed and became a habitat
for different types of organisms (e.g. gastropod), which evolved into new endemic
species (only found in this lake).

• Some regional or global scale hazards and disasters such as explosive volcanism
(with  ash  clouds),  marine  anoxia  and  flood  events  allow  for  the  excellent
preservation of fossils. For example ash fall from a Carboniferous Plinian eruption
covered swamp vegetation and prevented it  from decay. Another example is the
Bükkábrány drowned forest. Excellently preserved fossils allow for more detailed
reconstructions of past environments on Earth and help gain insight into the causal
mechanisms and environmental impacts of some hazards.

• Many types of hazards and disasters that are recorded in the geological record also
occur  frequently  in  present  times  (e.g.  volcanism,  tsunamis,  earthquakes  and
impacts).
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• Some hazards and disasters have not occurred for millions/thousands/hundreds of
years but are a risk in the future e.g. widespread marine anoxia, sea level rise, and
climate  change.  A  large  scale  salinity  crisis  like  the  one  that  occurred  in  the
Messinian has not occurred in present times but it is important to understand the
mechanisms that caused such an event because it may happen in the near future.

• Hazards  such  as  volcanic  eruptions,  impact  events  and  flooding  can  modify
significantly life at local, regional and global scale.
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