18 research outputs found
Early Alpine occupation backdates westward human migration in Late Glacial Europe
Before the end of the Last Glacial Maximum (LGM, ∼16.5 ka ago) set in motion major shifts in human culture and population structure, a consistent change in lithic technology, material culture, settlement pattern, and adaptive strategies is recorded in Southern Europe at ∼18–17 ka ago. In this time frame, the landscape of Northeastern Italy changed considerably, and the retreat of glaciers allowed hunter-gatherers to gradually recolonize the Alps. Change within this renewed cultural frame (i.e., during the Late Epigravettian phase) is currently associated with migrations favored by warmer climate linked to the Bølling-Allerød onset (14.7 ka ago), which replaced earlier genetic lineages with ancestry found in an individual who lived ∼14 ka ago at Riparo Villabruna, Italy, and shared among different contexts (Villabruna Cluster). Nevertheless, these dynamics and their chronology are still far from being disentangled due to fragmentary evidence for long-distance interactions across Europe. Here, we generate new genomic data from a human mandible uncovered at Riparo Tagliente (Veneto, Italy), which we directly dated to 16,980–16,510 cal BP (2σ). This individual, affected by focal osseous dysplasia, is genetically affine to the Villabruna Cluster. Our results therefore backdate by at least 3 ka the diffusion in Southern Europe of a genetic component linked to Balkan/Anatolian refugia, previously believed to have spread during the later Bølling/Allerød event. In light of the new genetic evidence, this population replacement chronologically coincides with the very emergence of major cultural transitions in Southern and Western Europe.The research was supported by the European Union through the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 724046 – Success awarded to S.B., http://www.erc-success.eu; grant agreement no. 803147 Resolution awarded to S.T., https://site.unibo.it/resolution-erc/en) as well as through the European Regional Development Fund (project no. 2014–2020.4.01.16–0030 to C.L.S. and T.S.) and projects no. 2014-2020.4.01.16-0024 and MOBTT53 (L.P.), by the Estonian Research Council personal research grant (PRG243; C.L.S.), and by UniPd PRID 2019 (L.P.).Peer reviewe
Recommended from our members
Artificial intelligence extension of the OSCAR-IB criteria
Artificial intelligence (AI)-based diagnostic algorithms have achieved ambitious aims through automated image pattern recognition. For neurological disorders, this includes neurodegeneration and inflammation. Scalable imaging technology for big data in neurology is optical coherence tomography (OCT). We highlight that OCT changes observed in the retina, as a window to the brain, are small, requiring rigorous quality control pipelines. There are existing tools for this purpose. Firstly, there are human-led validated consensus quality control criteria (OSCAR-IB) for OCT. Secondly, these criteria are embedded into OCT reporting guidelines (APOSTEL). The use of the described annotation of failed OCT scans advances machine learning. This is illustrated through the present review of the advantages and disadvantages of AI-based applications to OCT data. The neurological conditions reviewed here for the use of big data include Alzheimer disease, stroke, multiple sclerosis (MS), Parkinson disease, and epilepsy. It is noted that while big data is relevant for AI, ownership is complex. For this reason, we also reached out to involve representatives from patient organizations and the public domain in addition to clinical and research centers. The evidence reviewed can be grouped in a five-point expansion of the OSCAR-IB criteria to embrace AI (OSCAR-AI). The review concludes by specific recommendations on how this can be achieved practically and in compliance with existing guidelines
Variabilità e modalità di confezione delle punte a dorso nel Tardoglaciale: i casi studi di Riparo Tagliente (VR, Italia) e Troubat (Hautes-Pyrénées, Francia) / Variability of the manufacturing processes of backed points in the Late Glacial: the case-studies of Riparo Tagliente (VR, Italy) and Troubat (Hautes-Pyrénées, France)
Al fine di indagare le modalità di confezione delle punte a dorso nel Tardoglaciale, da un punto di vista diacronico e spaziale, si è scelto di analizzare il materiale di due siti, rispettivamente riferibili all’Epigravettiano recente e all’Aziliano: Riparo Tagliente (VR, Italia) e la grotta/riparo di Troubat (Hautes-Pyrénées, Francia)
Una nuova stagione di ricerche preistoriche in Cansiglio: la Grotta del Pian del Landro
Risultati delle ultime ricerche archeologiche sull'Altipiano del Cansiglio (BL