17 research outputs found

    Measuring and Modelling the Redshift Evolution of Clustering: the Hubble Deep Field North

    Get PDF
    (abridged) The evolution of galaxy clustering from z=0 to z=4.5 is analyzed using the angular correlation function and the photometric redshift distribution of galaxies brighter than I_{AB}\le 28.5 in the HDF North. The reliability of the photometric redshift estimates is discussed on the basis of the available spectroscopic redshifts, comparing different codes and investigating the effects of photometric errors. The redshift bins in which the clustering properties are measured are then optimized to take into account the uncertainties of the photometric redshifts. The results show that the comoving correlation length has a small decrease in the range 0<z<1 followed by an increase at higher z. We compare these results with the theoretical predictions of a variety of cosmological models belonging to the general class of CDM. The comparison with the expected mass clustering evolution indicates that the observed high-redshift galaxies are biased tracers of the dark matter with an effective bias b strongly increasing with redshift. Assuming an Einstein-de Sitter universe, we obtain b\simeq 2 at z=2 and b\simeq 5 at z=4. A comparison of the clustering amplitudes that we measured at z=3 with those reported for LBG suggests that the clustering depends on the abundance of the objects: more abundant objects are less clustered, as expected in the paradigm of hierarchical galaxy formation. The strong clustering and high bias measured at z=3 are consistent with the expected density of massive haloes predicted for the various cosmologies here considered. At z=4, the strong clustering observed in the HDF requires a significant fraction of massive haloes to be already formed by that epoch. This feature could be a discriminant test for the cosmological parameters if confirmed by future observations.Comment: 23 pages, Latex using MN style, figures enclosed. Version accepted for publication in MNRA

    Dwarf Elliptical Galaxies

    Get PDF
    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than MB=16M_B = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently available data can constrain 1) models for the formation of dE's, 2) the physical and evolutionary connections between different types of galaxies (nucleated and nonnucleated dE's, compact E's, irregulars, and blue compact dwarfs) that overlap in the same portion of the mass-spectrum of galaxies, 3) the contribution of dE's to the galaxy luminosity functions in clusters and the field, 4) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and 5) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.Comment: 63p, uuencoded compressed postscript, 2/8 figs included, A&A Review in press, request paper copies from [email protected], STScI 86

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC)

    No full text
    Millions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection. Instead, replicating virus and/or viral RNA—potentially capable of being translated to produce viral proteins—persist in tissue as a ‘reservoir’. This reservoir could modulate host immune responses or release viral proteins into the circulation. Here we review studies that have identified SARS-CoV-2 RNA/protein or immune responses indicative of a SARS-CoV-2 reservoir in PASC samples. Mechanisms by which a SARS-CoV-2 reservoir may contribute to PASC pathology, including coagulation, microbiome and neuroimmune abnormalities, are delineated. We identify research priorities to guide the further study of a SARS-CoV-2 reservoir in PASC, with the goal that clinical trials of antivirals or other therapeutics with potential to clear a SARS-CoV-2 reservoir are accelerated

    Gut Microbiota and Celiac Disease

    No full text
    Recent evidence regarding celiac disease has increasingly shown the role of innate immunity in triggering the immune response by stimulating the adaptive immune response and by mucosal damage. The interaction between the gut microbiota and the mucosal wall is mediated by the same receptors which can activate innate immunity. Thus, changes in gut microbiota may lead to activation of this inflammatory pathway. This paper is a review of the current knowledge regarding the relationship between celiac disease and gut microbiota. In fact, patients with celiac disease have a reduction in beneficial species and an increase in those potentially pathogenic as compared to healthy subjects. This dysbiosis is reduced, but might still remain, after a gluten-free diet. Thus, gut microbiota could play a significant role in the pathogenesis of celiac disease, as described by studies which link dysbiosis with the inflammatory milieu in celiac patients. The use of probiotics seems to reduce the inflammatory response and restore a normal proportion of beneficial bacteria in the gastrointestinal tract. Additional evidence is needed in order to better understand the role of gut microbiota in the pathogenesis of celiac disease, and the clinical impact and therapeutic use of probiotics in this setting
    corecore