26 research outputs found

    Development of admixture mapping panels for African Americans from commercial high-density SNP arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Admixture mapping is a powerful approach for identifying genetic variants involved in human disease that exploits the unique genomic structure in recently admixed populations. To use existing published panels of ancestry-informative markers (AIMs) for admixture mapping, markers have to be genotyped <it>de novo </it>for each admixed study sample and samples representing the ancestral parental populations. The increased availability of dense marker data on commercial chips has made it feasible to develop panels wherein the markers need not be predetermined.</p> <p>Results</p> <p>We developed two panels of AIMs (~2,000 markers each) based on the Affymetrix Genome-Wide Human SNP Array 6.0 for admixture mapping with African American samples. These two AIM panels had good map power that was higher than that of a denser panel of ~20,000 random markers as well as other published panels of AIMs. As a test case, we applied the panels in an admixture mapping study of hypertension in African Americans in the Washington, D.C. metropolitan area.</p> <p>Conclusions</p> <p>Developing marker panels for admixture mapping from existing genome-wide genotype data offers two major advantages: (1) no <it>de novo </it>genotyping needs to be done, thereby saving costs, and (2) markers can be filtered for various quality measures and replacement markers (to minimize gaps) can be selected at no additional cost. Panels of carefully selected AIMs have two major advantages over panels of random markers: (1) the map power from sparser panels of AIMs is higher than that of ~10-fold denser panels of random markers, and (2) clusters can be labeled based on information from the parental populations. With current technology, chip-based genome-wide genotyping is less expensive than genotyping ~20,000 random markers. The major advantage of using random markers is the absence of ascertainment effects resulting from the process of selecting markers. The ability to develop marker panels informative for ancestry from SNP chip genotype data provides a fresh opportunity to conduct admixture mapping for disease genes in admixed populations when genome-wide association data exist or are planned.</p

    Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.

    Get PDF
    Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 Ă— 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma

    Transferability of genome-wide associated loci for asthma in African Americans

    No full text
    <p><i>Objective:</i> Transferability of significantly associated loci or GWAS “hits” adds credibility to genotype-disease associations and provides evidence for generalizability across different ancestral populations. We sought evidence of association of known asthma-associated single nucleotide polymorphisms (SNPs) in an African American population. <i>Methods:</i> Subjects comprised 661 participants (261 asthma cases and 400 controls) from the Howard University Family Study. Forty-eight SNPs previously reported to be associated with asthma by GWAS were selected for testing. We adopted a combined strategy by first adopting an “exact” approach where we looked-up only the reported index SNP. For those index SNPs missing form our dataset, we used a “local” approach that examined all the regional SNPs in LD with the index SNP. <i>Results:</i> Out of the 48 SNPs, our cohort had genotype data available for 27, which were examined for exact replication. Of these, two SNPs were found positively associated with asthma. These included: rs10508372 (OR = 1.567 [95%CI, 1.133-2.167], <i>P</i> = 0.0066) and rs2378383 (OR = 2.147 [95%CI, 1.149–4.013], <i>P</i> = 0.0166), located on chromosomal bands 10p14 and 9q21.31, respectively. Local replication of the remaining 21 loci showed association at two chromosomal loci (9p24.1-rs2381413 and 6p21.32-rs3132947; Bonferroni-corrected <i>P</i> values: 0.0033 and 0.0197, respectively). Of note, multiple SNPs in LD with rs2381413 located upstream of <i>IL33</i> were significantly associated with asthma. <i>Conclusions:</i> This study has successfully transferred four reported asthma-associated loci in an independent African American population. Identification of several asthma-associated SNPs in the upstream of the <i>IL33</i>, a gene previously implicated in allergic inflammation of asthmatic airway, supports the generalizability of this finding.</p

    Assembly of a pan-genome from deep sequencing of 910 humans of African descent

    No full text
    We used a deeply sequenced dataset of 910 individuals, all of African descent, to construct a set of DNA sequences that is present in these individuals but missing from the reference human genome. We aligned 1.19 trillion reads from the 910 individuals to the reference genome (GRCh38), collected all reads that failed to align, and assembled these reads into contiguous sequences (contigs). We then compared all contigs to one another to identify a set of unique sequences representing regions of the African pan-genome missing from the reference genome. Our analysis revealed 296,485,284 bp in 125,715 distinct contigs present in the populations of African descent, demonstrating that the African pan-genome contains ~10% more DNA than the current human reference genome. Although the functional significance of nearly all of this sequence is unknown, 387 of the novel contigs fall within 315 distinct protein-coding genes, and the rest appear to be intergenic

    Correction to: Assembly of a pan-genome from deep sequencing of 910 humans of African descent (Nature Genetics, (2019), 51, 1, (30-35), 10.1038/s41588-018-0273-y)

    No full text
    In the version of this article initially published, the statement “there are no pan-genomes for any other animal or plant species” was incorrect. The statement has been corrected to “there are no reported pan-genomes for any other animal species, to our knowledge.” We thank David Edwards for bringing this error to our attention. The error has been corrected in the HTML and PDF versions of the article

    Association study in African-admixed populations across the Americas recapitulates asthma risk loci in non-African populations

    No full text
    Asthma is a complex disease with striking disparities across racial and ethnic groups. Despite its relatively high burden, representation of individuals of African ancestry in asthma genome-wide association studies (GWAS) has been inadequate, and true associations in these underrepresented minority groups have been inconclusive. We report the results of a genome-wide meta-analysis from the Consortium on Asthma among African Ancestry Populations (CAAPA; 7009 asthma cases, 7645 controls). We find strong evidence for association at four previously reported asthma loci whose discovery was driven largely by non-African populations, including the chromosome 17q12–q21 locus and the chr12q13 region, a novel (and not previously replicated) asthma locus recently identified by the Trans-National Asthma Genetic Consortium (TAGC). An additional seven loci reported by TAGC show marginal evidence for association in CAAPA. We also identify two novel loci (8p23 and 8q24) that may be specific to asthma risk in African ancestry populations
    corecore