11 research outputs found

    A pilot study to evaluate the efficacy of self-attachment to treat chronic anxiety and/or depression in Iranian women

    Get PDF
    The aim of this pilot study was to evaluate the efficacy of the new Self-Attachment Technique (SAT) in treating resistant anxiety and depression, lasting at least three years, among Iranian women from different social backgrounds. In this intervention, the participant, using their childhood photos, imaginatively creates an affectional bond with their childhood self, vows to consistently support and lovingly re-raise this child to emotional well-being. We conducted a longitudinal study with repeated measurement to evaluate the efficacy of SAT using ANOVA. Thirty-eight women (N=30) satisfying the inclusion and exclusion criteria were recruited from different parts of Tehran. To describe the SAT protocols, a total of eight one-to-one sessions were offered to the recruits, the first four were weekly while the last four were fortnightly. The participants were expected to practice the protocols for twenty minutes twice a day. Two questionnaires, GAD-7 and PHQ-9, were used to measure anxiety and depression levels before and after the intervention and in a three-month follow-up. Thirty women completed the course. The change in the anxiety level between the pre-test and the post-test was significant at p<0.001 with effect size 2.6. The change in anxiety between pre-test and follow-up test was also significant at p<0.001 with effect size 3.0 respectively. The change in anxiety between the post-test and the follow-up was significant at p<0.05 with effect size 0.6. For depression, the change between the pre-test and the post-test or the follow-up was significant at p<0.001 with effect size 2.5 for each

    Time-Resolved Microwave Photoconductivity (TRMC) Using Planar Microwave Resonators: Application to the Study of Long-Lived Charge Pairs in Photoexcited Titania Nanotube Arrays

    No full text
    Steady-state (SRMC) and time-resolved microwave photoconductivity (TRMC) are key techniques used to perform the contact-less determination of carrier density, transport, trapping, and recombination parameters in charge transport materials such as organic semiconductors and dyes, inorganic semiconductors, and metal–insulator composites, which find use in conductive inks, thin film transistors, light-emitting diodes, photocatalysts, and photovoltaics. We present the theory, design, simulation, and fabrication of a planar microwave ring resonator operating at 5.25 GHz with a quality factor of 224, to perform SRMC and TRMC measurements. Our method consists of measuring the resonance frequency (<i>f</i><sub>0</sub>) and <i>Q</i>-factor of the microwave resonator with the sample to be probed placed in a defined sensitive region of the resonator where the microwave field is highly concentrated. We also provide proof of concept measurements of the time-resolved microwave photoresponse of anatase-phase TiO<sub>2</sub> nanotube array membranes (TNTAMs) using the planar microstrip resonator. An unusual observation was the persistence of charged pair states in TNTAMs for several hours at room temperature under ambient conditions. Fast (120–220 s), slow (1300–2850 s), and very slow (6–26 h) components were extracted from the long-lived photoconductive decays of TNTAMs in response to 365, 250, and 405 nm illumination and assigned to various trap-mediated processes in TiO<sub>2</sub> nanotubes
    corecore