967 research outputs found
My Son Can't Socially Distance or Wear a Mask: How Families of Preschool Children with Severe Developmental Delays and Challenging Behavior Experienced the COVID-19 Pandemic
Background: Families of children with developmental delays (DD) prior to the COVID-19 pandemic experienced inequalities in accessing health and social care services. Measures put in place to combat the spread of the coronavirus have potentially exacerbated existing inequalities and have led to additional pressures for these families.
/
Methods: We carried out a cross-sectional online survey of parents of young children with moderate to severe DD and challenging behaviors living in England, UK. We asked about the impact the pandemic has had on their family well-being, receipt of support, and post COVID-19 concerns.
/
Results: Eighty-eight parents who are participants in an ongoing clinical trial (EPICC-ID) reported a broad range of challenges they faced during the pandemic: lack of information specific to children with DD; difficulties following social distancing and isolation rules; disruption or pause of health and social care services; deterioration in parental mental health and regression of the child’s skills. Future access to services, negative long-term impact of school closures, parental unemployment were the parents’ main post-COVID-19 concerns.
/
Conclusions: Families of children with significant developmental delays fear lasting impact of the pandemic on their own psychological and material wellbeing and on their child’s health. These families require urgent help to meet major health and social care needs and should be prioritized within an overall children’s mental health strategy.
/
The article includes a commentary from parents with lived experience
General relativistic radiation hydrodynamics of accretion flows. I: Bondi-Hoyle accretion
We present a new code for performing general-relativistic
radiation-hydrodynamics simulations of accretion flows onto black holes. The
radiation field is treated in the optically-thick approximation, with the
opacity contributed by Thomson scattering and thermal bremsstrahlung. Our
analysis is concentrated on a detailed numerical investigation of hot
two-dimensional, Bondi-Hoyle accretion flows with various Mach numbers. We find
significant differences with respect to purely hydrodynamical evolutions. In
particular, once the system relaxes to a radiation-pressure dominated regime,
the accretion rates become about two orders of magnitude smaller than in the
purely hydrodynamical case, remaining however super-Eddington as are the
luminosities. Furthermore, when increasing the Mach number of the inflowing
gas, the accretion rates become smaller because of the smaller cross section of
the black hole, but the luminosities increase as a result a stronger emission
in the shocked regions. Overall, our approach provides the first
self-consistent calculation of the Bondi-Hoyle luminosity, most of which is
emitted within r~100 M from the black hole, with typical values L/L_Edd ~ 1-7,
and corresponding energy efficiencies eta_BH ~ 0.09-0.5. The possibility of
computing luminosities self-consistently has also allowed us to compare with
the bremsstrahlung luminosity often used in modelling the electromagnetic
counterparts to supermassive black-hole binaries, to find that in the
optically-thick regime these more crude estimates are about 20 times larger
than our radiation-hydrodynamics results.Comment: With updated bibliographyc informatio
On the development of QPOs in Bondi-Hoyle accretion flows
The numerical investigation of Bondi-Hoyle accretion onto a moving black hole
has a long history, both in Newtonian and in general-relativistic physics. By
performing new two-dimensional and general-relativistic simulations onto a
rotating black hole, we point out a novel feature, namely, that quasi-periodic
oscillations (QPOs) are naturally produced in the shock cone that develops in
the downstream part of the flow. Because the shock cone in the downstream part
of the flow acts as a cavity trapping pressure perturbations, modes with
frequencies in the integer ratios 2:1 and 3:1 are easily produced. The
frequencies of these modes depend on the black-hole spin and on the properties
of the flow, and scale linearly with the inverse of the black-hole mass. Our
results may be relevant for explaining the detection of QPOs in Sagittarius A*,
once such detection is confirmed by further observations. Finally, we report on
the development of the flip-flop instability, which can affect the shock cone
under suitable conditions; such an instability has been discussed before in
Newtonian simulations but was never found in a relativistic regime.Comment: 11 pages, 7 figure
Orbital properties of an unusually low-mass sdB star in a close binary system with a white dwarf
We have used 605 days of photometric data from the Kepler spacecraft to study KIC 6614501, a close binary system with an orbital period of 0.157 497 47(25) days (3.779 939 h), that consists of a low-mass subdwarf B (sdB) star and a white dwarf (WD). As seen in many other similar systems, the gravitational field of the WD produces an ellipsoidal deformation of the sdB which appears in the light curve as a modulation at two times the orbital frequency. The ellipsoidal deformation of the sdB implies that the system has a maximum inclination of ∼40°, with i ≈ 20° being the most likely. The orbital radial velocity (RV) of the sdB star is high enough to produce a Doppler beaming effect with an amplitude of 432 ± 5 ppm, clearly visible in the folded light curve. The photometric amplitude that we obtain, K1 = 85.8 km s-1, is ∼12 per cent less than the spectroscopic RV amplitude of 97.2 ± 2.0 km s-1. The discrepancy is due to the photometric contamination from a close object at about 5 arcsec north-west of KIC 6614501, which is difficult to remove. The atmospheric parameters of the sdB star, Teff = 23 700 ± 500 K and log g = 5.70 ± 0.10, imply that it is a rare object below the extreme horizontal branch (EHB), similar to HD 188112. The comparison with different evolutionary tracks suggests a mass between ∼0.18 and ∼0.25 M⊙, too low to sustain core helium burning. If the mass was close to 0.18-0.19 M⊙, the star could be already on the final He-core WD cooling track. A higher mass, up to ∼0.25 M⊙, would be compatible with a He-core WD progenitor undergoing a cooling phase in a H-shell flash loop. A third possibility, with a mass between ∼0.32 and ∼0.40 M⊙, cannot be excluded and would imply that the sdB is a ‘normal\u27 (but with an unusually low mass) EHB star burning He in its core. In all these different scenarios, the system is expected to merge in less than 3.1 Gyr due to gravitational wave radiation
Superdeformation in Po
The Yb(Si,5n) reaction at 148 MeV with thin targets was used
to populate high-angular momentum states in Po. Resulting rays
were observed with Gammasphere. A weakly-populated superdeformed band of 10
-ray transitions was found and has been assigned to Po. This is
the first observation of a SD band in the region in a nucleus
with . The of the new band is very similar to those of
the yrast SD bands in Hg and Pb. The intensity profile suggests
that this band is populated through states close to where the SD band crosses
the yrast line and the angular momentum at which the fission process dominates.Comment: 10 pages, revtex, 2 figs. available on request, submitted to Phys.
Rev. C. (Rapid Communications
Switchgrass Response to Nitrogen Fertilizer Across Diverse Environments in the USA: a Regional Feedstock Partnership Report
The Regional Feedstock Partnership is a collaborative effort between the Sun Grant Initiative (through Land Grant Universities), the US Department of Energy, and the US Department of Agriculture. One segment of this partnership is the field-scale evaluation of switchgrass (Panicum virgatum L.) in diverse sites across the USA. Switchgrass was planted (11.2 kg PLS ha−1 ) in replicated plots in New York, Oklahoma, South Dakota, and Virginia in 2008 and in Iowa in 2009. Adapted switchgrass cultivars were selected for each location and baseline soil samples collected before planting. Nitrogen fertilizer (0, 56, and 112 kg N ha−1 ) was applied each spring beginning the year after planting, and switchgrass was harvested once annually after senescence. Establishment, management, and harvest operations were completed using fieldscale equipment. Switchgrass production ranged from 2 to 11.5 Mg ha−1 across locations and years. Yields were lowest the first year after establishment. Switchgrass responded positively to N in 6 of 19 location/year combinations and there was one location/year combination (NY in Year 2) where a significant negative response was noted. Initial soil N levels were lowest in SD and VA (significant N response) and highest at the other three locations (no N response). Although N rate affected some measures of biomass quality (N and hemicellulose), location and year had greater overall effects on all quality parameters evaluated. These results demonstrate the importance of local field-scale research and of proper N management in order to reduce unnecessary expense and potential environmental impacts of switchgrass grown for bioenergy
The forkhead transcription factor, FOXP3: a critical role in male fertility in mice.
Fertility is dependent on the hypothalamic-pituitary-gonadal axis. Each component of this axis is essential for normal reproductive function. Mice with a mutation in the forkhead transcription factor gene, Foxp3, exhibit autoimmunity and infertility. We have previously shown that Foxp3 mutant mice have significantly reduced expression of pituitary gonadotropins. To address the role of Foxp3 in gonadal function, we examined the gonadal phenotype of these mice. Foxp3 mutant mice have significantly reduced seminal vesicle and testis weights compared with Foxp3(+/Y) littermates. Spermatogenesis in Foxp3 mutant males is arrested prior to spermatid elongation. Activation of luteinizing hormone signaling in Foxp3 mutant mice by treatment with human chorionic gonadotropin significantly increases seminal vesicle and testis weights as well as testicular testosterone content and seminiferous tubule diameter. Interestingly, human chorionic gonadotropin treatments rescue spermatogenesis in Foxp3 mutant males, suggesting that their gonadal phenotype is due primarily to a loss of pituitary gonadotropin stimulation rather than an intrinsic gonadal defect
Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice
BACKGROUND:Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO) exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week) Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. METHODS:Aged (20-24 months) Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. RESULTS:In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005). Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. CONCLUSIONS:Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice
On MSSM charged Higgs boson production in association with an electroweak W boson at electron positron colliders
We present a calculation of the cross section for the process e+ e- --> W+/-
H-/+ in the minimal supersymmetric standard model (MSSM) and the Two Higgs
Doublet Model (THDM). We study the basic features of the MSSM prediction for
some distinctive parameter scenarios. We find large effects from virtual
squarks for scenarios with large mixing in the stop sector which can lead to a
cross section vastly different from a THDM with identical Higgs sector
parameters. We investigate this interesting behaviour in more detail by
thoroughly scanning the MSSM parameter space for regions of large cross
section. For a charged Higgs boson too heavy to be pair-produced at such a
machine, it turns out that a large MSSM cross section with a good chance of
observation is linked to a squark mass scale below 600 GeV and a considerable
amount of mixing in either the stop and sbottom sector.Comment: 25 pages, 10 figures (two in colour). Substantially improved on the
MSSM parameter restrictions taken into account. Added some reference
- …