95 research outputs found

    NIGHT: a compact, near-infrared, high-resolution spectrograph to survey helium in exoplanet systems

    Full text link
    Among highly irradiated exoplanets, some have been found to undergo significant hydrodynamic expansion traced by atmospheric escape. To better understand these processes in the context of planetary evolution, we propose NIGHT (the Near-Infrared Gatherer of Helium Transits). NIGHT is a high-resolution spectrograph dedicated to surveying and temporally monitoring He I triplet absorption at 1083nm in stellar and planetary atmospheres. In this paper, we outline our scientific objectives, requirements, and cost-efficient design. Our simulations, based on previous detections and modelling using the current exoplanet population, determine our requirements and survey targets. With a spectral resolution of 70,000 on a 2-meter telescope, NIGHT can accurately resolve the helium triplet and detect 1% peak absorption in 118 known exoplanets in a single transit. Additionally, it can search for three-sigma temporal variations of 0.4% in 66 exoplanets in-between two transits. These are conservative estimates considering the ongoing detections of transiting planets amenable to atmospheric characterisation. We find that instrumental stability at 40m/s, less stringent than for radial velocity monitoring, is sufficient for transmission spectroscopy in He I. As such, NIGHT can utilize mostly off-the-shelf components, ensuring cost-efficiency. A fibre-fed system allows for flexibility as a visitor instrument on a variety of telescopes, making it ideal for follow-up observations after JWST or ground-based detections. Over a few years of surveying, NIGHT could offer detailed insights into the mechanisms shaping the hot Neptune desert and close-in planet population by significantly expanding the statistical sample of planets with known evaporating atmospheres. First light is expected in 2024.Comment: 15 pages, 20 figures, this manuscript has been accepted for publication in MNRAS. This is a pre-copyedited, author-produced PD

    Characterization of silicon heterojunctions for solar cells

    Get PDF
    Conductive-probe atomic force microscopy (CP-AFM) measurements reveal the existence of a conductive channel at the interface between p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) as well as at the interface between n-type a-Si:H and p-type c-Si. This is in good agreement with planar conductance measurements that show a large interface conductance. It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions. These are intimately related to the band offsets, which allows us to determine these parameters with good precision

    Techno-economic assessment of CO2 quality effect on its storage and transport: CO2QUEST: An overview of aims, objectives and main findings

    Get PDF
    This paper provides an overview of the aims, objectives and the main findings of the CO2QUEST FP7 collaborative project, funded by the European Commission and designed to address the fundamentally important and urgent issues regarding the impact of the typical impurities in CO2 streams captured from fossil fuel power plants and other CO2 intensive industries on their safe and economic pipeline transportation and storage. The main features and results recorded from some of the unique test facilities constructed as part of the project are presented. These include an extensively instrumented realistic-scale test pipeline for conducting pipeline rupture and dispersion tests in China, an injection test facility in France to study the mobility of trace metallic elements contained in a CO2 stream following injection near a shallow-water qualifier and fluid/rock interactions and well integrity experiments conducted using a fully instrumented deep-well CO2/impurities injection test facility in Israel. The above, along with the various unique mathematical models developed, provide the fundamentally important tools needed to define impurity tolerance levels, mixing protocols and control measures for pipeline networks and storage infrastructure, thus contributing to the development of relevant standards for the safe design and economic operation of CCS

    The P2Y1 receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice

    Get PDF
    Pancreatic β cells express several P2 receptors including P2Y1 and the modulation of insulin secretion by extracellular nucleotides has suggested that these receptors may contribute to the regulation of glucose homeostasis. To determine whether the P2Y1 receptor is involved in this process, we performed studies in P2Y1 mice. In baseline conditions, P2Y1-mice exhibited a 15% increase in glycemia and a 40% increase in insulinemia, associated with a 10% increase in body weight, pointing to a role of the P2Y1 receptor in the control of glucose metabolism. Dynamic experiments further showed that P2Y1-mice exhibited a tendency to glucose intolerance. These features were associated with a decrease in the plasma levels of free fatty acid and triglycerides. When fed a lipids and sucrose enriched diet for 15 weeks, the two genotypes no longer displayed any significant differences. To determine whether the P2Y1 receptor was directly involved in the control of insulin secretion, experiments were carried out in isolated Langerhans islets. In the presence of high concentrations of glucose, insulin secretion was significantly greater in islets from P2Y1-mice. Altogether, these results show that the P2Y1 receptor plays a physiological role in the maintenance of glucose homeostasis at least in part by regulating insulin secretion

    Carbon capture: Whole system experimental and theoretical modeling investigation of the optimal CO<inf>2</inf> stream composition in the carbon capture and sequestration chain

    Get PDF
    Rapid increase in emissions of greenhouse gases (GHGs) has become a major concern to the global community. This is associated with the rapid growth in population and corresponding increase in energy demand. Combustion of fossil fuels accounts for the majority of CO2 emissions. Coal is used mostly for electricity generation, for instance, about 85.5% of coal (produced and imported) in the United 459Kingdom was used for electricity generation in 2011 [1]. Coal-fired power plants are therefore the largest stationary source of CO2

    Détermination des pesticides à surveiller dans le compartiment aérien, approche par hiérarchisation. Rapport d'étude INERIS

    No full text
    In 2001, the French Minister of Agriculture launch a national consultation to establish priorities of phytosanitary substances to survey into the air. Ineris has been in charge of this project.Le Ministère en charge de l'Agriculture (Direction Générale de la Forêt et des Affaires Rurales) a initié en 2001 une réflexion nationale visant à établir des listes de substances phytosanitaires à surveiller en priorité dans le compartiment aérien. L'Ineris a été chargé de ce projet
    corecore