17 research outputs found

    Detection of SARS-CoV-2 infection by saliva and nasopharyngeal sampling in frontline healthcare workers: An observational cohort study

    Get PDF
    Background The SARS-CoV-2 pandemic has caused an unprecedented strain on healthcare systems worldwide, including the United Kingdom National Health Service (NHS). We conducted an observational cohort study of SARS-CoV-2 infection in frontline healthcare workers (HCW) working in an acute NHS Trust during the first wave of the pandemic, to answer emerging questions surrounding SARS-CoV-2 infection, diagnosis, transmission and control. Methods Using self-collected weekly saliva and twice weekly combined oropharyngeal/nasopharyngeal (OP/NP) samples, in addition to self-assessed symptom profiles and isolation behaviours, we retrospectively compared SARS-CoV-2 detection by RT-qPCR of saliva and OP/NP samples. We report the association with contemporaneous symptoms and isolation behaviour. Results Over a 12-week period from 30th March 2020, 40·0% (n = 34/85, 95% confidence interval 31·3–51·8%) HCW had evidence of SARS-CoV-2 infection by surveillance OP/NP swab and/or saliva sample. Symptoms were reported by 47·1% (n = 40) and self-isolation by 25·9% (n = 22) participants. Only 44.1% (n = 15/34) participants with SARS-CoV-2 infection reported any symptoms within 14 days of a positive result and only 29·4% (n = 10/34) reported self-isolation periods. Overall agreement between paired saliva and OP/NP swabs was 93·4% (n = 211/226 pairs) but rates of positive concordance were low. In paired samples with at least one positive result, 35·0% (n = 7/20) were positive exclusively by OP/NP swab, 40·0% (n = 8/20) exclusively by saliva and in only 25·0% (n = 5/20) were the OP/NP and saliva result both positive. Conclusions HCW are a potential source of SARS-CoV-2 transmission in hospitals and symptom screening will identify the minority of infections. Without routine asymptomatic SARS-CoV-2 screening, it is likely that HCW with SARS-CoV-2 infection would continue to attend work. Saliva, in addition to OP/NP swab testing, facilitated ascertainment of symptomatic and asymptomatic SARS-CoV-2 infections. Combined saliva and OP/NP swab sampling would improve detection of SARS-CoV-2 for surveillance and is recommended for a high sensitivity strateg

    Structure of general-population antibody titer distributions to influenza A virus.

    Get PDF
    Seroepidemiological studies aim to understand population-level exposure and immunity to infectious diseases. Their results are normally presented as binary outcomes describing the presence or absence of pathogen-specific antibody, despite the fact that many assays measure continuous quantities. A population's natural distribution of antibody titers to an endemic infectious disease may include information on multiple serological states - naiveté, recent infection, non-recent infection, childhood infection - depending on the disease in question and the acquisition and waning patterns of immunity. In this study, we investigate 20,152 general-population serum samples from southern Vietnam collected between 2009 and 2013 from which we report antibody titers to the influenza virus HA1 protein using a continuous titer measurement from a protein microarray assay. We describe the distributions of antibody titers to subtypes 2009 H1N1 and H3N2. Using a model selection approach to fit mixture distributions, we show that 2009 H1N1 antibody titers fall into four titer subgroups and that H3N2 titers fall into three subgroups. For H1N1, our interpretation is that the two highest-titer subgroups correspond to recent and historical infection, which is consistent with 2009 pandemic attack rates. Similar interpretations are available for H3N2, but right-censoring of titers makes these interpretations difficult to validate

    Population-Level Antibody Estimates to Novel Influenza A/H7N9

    Get PDF
    There are no contemporary data available describing human immunity to novel influenza A/H7N9. Using 1723 prospectively collected serum samples in southern Vietnam, we tested for antibodies to 5 avian influenza virus antigens, using a protein microarray. General-population antibody titers against subtype H7 virus are higher than antibody titers against subtype H5 and lower than titers against H9. The highest titers were observed for human influenza virus subtypes. Titers to avian influenza virus antigens increased with age and with geometric mean antibody titer to human influenza virus antigens. There were no titer differences between the urban and the rural location in our study

    Non-annual seasonality of influenza-like illness in a tropical urban setting.

    Get PDF
    BACKGROUND In temperate and sub-tropical climates, respiratory diseases exhibit seasonal peaks in winter. In the tropics, with no winter, peak timings are irregular. METHODS To obtain a detailed picture of influenza-like illness (ILI) patterns in the tropics, we established an mHealth study in community clinics in Ho Chi Minh City (HCMC). During 2009-2015, clinics reported daily case numbers via SMS, with a subset performing molecular diagnostics for influenza virus. This real-time epidemiology network absorbs 6,000 ILI reports annually, one or two orders of magnitude more than typical surveillance systems. A real-time online ILI indicator was developed to inform clinicians of the daily ILI activity in HCMC. RESULTS From August 2009 to December 2015, 63 clinics were enrolled and 37,676 SMS reports were received, covering approximately 1.8M outpatient visits. Approximately 10.6% of outpatients met the ILI case definition. ILI activity in HCMC exhibited strong non-annual dynamics with a dominant periodicity of 206 days. This was confirmed by time-series decomposition, step-wise regression, and a forecasting exercise showing that median forecasting errors are 30%-40% lower when using a 206-day cycle. In ILI patients from whom naso-pharyngeal swabs were taken, 31.2% were positive for influenza. There was no correlation between the ILI time series and the time series of influenza, influenza A, or influenza B (all p > 0.15). CONCLUSION This suggests, for the first-time, that a non-annual cycle may be an essential driver of respiratory disease dynamics in the tropics. An immunological interference hypothesis is discussed as a potential underlying mechanism. This article is protected by copyright. All rights reserved
    corecore