6 research outputs found

    Novel ball head screw and screwdriver design for implant-supported prostheses with angled channels: A finite element analysis

    Get PDF
    The primary objective of this study was to design the optimal geometry of a novel screwdriver, create the grooves on a ball head screw, and demonstrate its resistance to a torque of up to 40 Ncm at angulations of 0°, 15°, and 30° by using nonlinear finite element analysis. A secondary objective was to create a foolproof, easily recognizable system. The grooved ball head screw and geometry of the screwdriver, functioning from an angulation of 0° to 30°, was generated using Pro-ENGINEER Wildfire 5.0 software. Static structural analyses among bodies in contact were performed at different angles of 0°, 15°, and 30° at a torque of 20 Ncm and 40 Ncm using nonlinear finite element simulation by means of ANSYS 12.0. The maximum stress supported by the ball head screw and screwdriver was similar at 20 Ncm and 40 Ncm. Although greater deformations were found at 40 Ncm, these were small and might not affect the performance of the system. Further, the rupture torque value for the M2 connection was 55 Ncm for 0° and 30°, and 47.5 Ncm for 15°. Numerical simulation showed that the ball head system design can achieve the mechanical strength requirements expected for screws used in implant-supported restorations at an angulation of up to 30°. Finite element analysis showed this novel ball head screw and screwdriver system to be a good solution for angled screw channels in implant-supported prostheses.Postprint (published version

    Novel ball head screw and screwdriver design for implant-supported prostheses with angled channels: a finite element analysis

    Get PDF
    The primary objective of this study was to design the optimal geometry of a novel screwdriver, create the grooves on a ball head screw, and demonstrate its resistance to a torque of up to 40 Ncm at angulations of 0°, 15°, and 30° by using nonlinear finite element analysis. A secondary objective was to create a foolproof, easily recognizable system. The grooved ball head screw and geometry of the screwdriver, functioning from an angulation of 0° to 30°, was generated using Pro-ENGINEER Wildfire 5.0 software. Static structural analyses among bodies in contact were performed at different angles of 0°, 15°, and 30° at a torque of 20 Ncm and 40 Ncm using nonlinear finite element simulation by means of ANSYS 12.0. The maximum stress supported by the ball head screw and screwdriver was similar at 20 Ncm and 40 Ncm. Although greater deformations were found at 40 Ncm, these were small and might not affect the performance of the system. Further, the rupture torque value for the M2 connection was 55 Ncm for 0° and 30°, and 47.5 Ncm for 15°. Numerical simulation showed that the ball head system design can achieve the mechanical strength requirements expected for screws used in implant-supported restorations at an angulation of up to 30°. Finite element analysis showed this novel ball head screw and screwdriver system to be a good solution for angled screw channels in implant-supported prostheses

    Disseny, anàlisi i avaluació per elements finits i estudis mecànics d'una nova cabota de cargol per a retenció de pròtesis dentals cargolades a implants i la seva respectiva eina

    No full text
    L'objectiu principal d'aquest estudi va ser dissenyar la geometria òptima d'una nova eina; crear les ranures del cap esfèric d’un nou cargol; i demostrar la seva resistència a un parell de fins a 40 N·cm a una angulació de 0, 15 i 30 graus utilitzant l'anàlisi d'elements finits no lineals. Un objectiu secundari va ser crear un sistema infal·lible i fàcilment recognoscible. Els dissenys del cargol de cap esfèric i la geometria de l’eina, que funcionen a qualsevol angulació de 0 a 30°, es van generar utilitzant el programa Pro-ENGINEER Wildfire 5.0. Les anàlisis estructurals estàtiques entre els cossos en contacte es van realitzar a diferents angles de 0°, 15° i 30° a un parell de 20 N·cm i 40 N·cm, utilitzant la simulació d'elements finits no lineals mitjançant l’ANSYS 12.0. La tensió màxima del cap del cargol i l’eina va ser similar a 20 N·cm i 40 N·cm. Encara que es van trobar deformacions majors a 40 N·cm, aquestes van ser petites i no van afectar el rendiment de l’enllaç. A més, el valor del parell de ruptura de l’enllaç amb rosca M2 va ser de 55 N·cm per a 0° i 30° i 47,5 N·cm per a 15°. L'anàlisi d'elements finits va mostrar que aquest nou cargol de cap esfèric i la seva respectiva eina són una bona solució per utilitzar en pròtesis amb orificis angulats cargolades a implants. Finalment, es van desenvolupar les proves mecàniques necessàries per adquirir dades més fiables i comprendre millor el seu comportament sota condicions de fatiga per tal de determinar la resistència a la torsió del conjunt cargol i eina Ball Head System (BHS) a 0°, 20° i 30° d’angulació; per comparar el conjunt BHS amb el sistema de eina hexagonal de 1,30 mm (HexS) a 20°; i analitzar la condició del conjunt BHS després de 10 i 30 iteracions amb un parell de 30 N·cm a una angulació de 30°. El conjunt BHS permet un parell de fins a 54 N·cm. En les mateixes condicions, el conjunt BHS va mostrar més resistència de parell que el conjunt d’HexS. Aquest últim es va haver de descargolar amb una eina de pressió de taller. Rellevància clínica: Aquest nou conjunt cargol i eina BHS es pot utilitzar per a orificis angulats de fins a 30º, és visualment fàcil d’identificar i fins i tot en presència de deformació del cap del cargol, la majoria es poden descargolar amb la seva pròpia eina.The primary objective of this study was to design the optimal geometry of a novel screwdriver; create the grooves on a ball head screw; and demonstrate its resistance to a torque of up to 40 N·cm at an angulation of 0, 15 and 30 degrees by using nonlinear finite element analysis (FEA). A secondary objective was to create a foolproof and easily recognizable system. The grooved ball head screw and geometry of the screwdriver, functioning from an angulation of 0° to 30°, was generated using Pro-ENGINEER Wildfire 5.0 software. Static structural analyses between bodies in contact were performed at different angles of 0°, 15° and 30° at a torque of 20 N·cm and 40 N·cm, using nonlinear finite element simulation by means of ANSYS 12.0. The maximum stress supported by the ball head screw and screwdriver was similar at 20 N·cm and 40 N·cm. Although greater deformations were found at 40 N·cm, these were small and might not affect the performance of the system. Besides, the rupture torque value for the M2 connection was 55 N·cm for 0° and 30°, and 47.5 N·cm for 15°. Finite element analysis showed this novel ball head screw and screwdriver system to be a good solution for angled screw channels in implant-supported prostheses. Finally, the needed mechanical tests to acquire more reliable data and to better understand its behaviour under fatigue conditions were developed in order to determine the torsion resistance of the Ball Head System (BHS) screw and screwdriver set at 0°, 20° and 30° angulations; to compare the BHS set with the 1.30 mm hexagonal screwdriver system (HexS) at 20°; and analyse the condition of the BHS after 10 and 30 iterations with 30 N·cm torque at 30° angulation. The BHS allows tightening at a torque of up to 54 N·cm. Under the same conditions, BHS showed more torque resistance than HexS, which could not be removed. Clinical relevance: This new system can be used for angled screw channels, and even in presence of deformation, most can be removed with their own screwdriver

    Disseny, anàlisi i avaluació per elements finits i estudis mecànics d'una nova cabota de cargol per a retenció de pròtesis dentals cargolades a implants i la seva respectiva eina

    Get PDF
    [cat] 'objectiu principal d'aquest estudi va ser dissenyar la geometria òptima d'una nova eina; crear les ranures del cap esfèric d’un nou cargol; i demostrar la seva resistència a un parell de fins a 40 N·cm a una angulació de 0, 15 i 30 graus utilitzant l'anàlisi d'elements finits no lineals. Un objectiu secundari va ser crear un sistema infal·lible i fàcilment recognoscible. Els dissenys del cargol de cap esfèric i la geometria de l’eina, que funcionen a qualsevol angulació de 0 a 30°, es van generar utilitzant el programa Pro-ENGINEER Wildfire 5.0. Les anàlisis estructurals estàtiques entre els cossos en contacte es van realitzar a diferents angles de 0°, 15° i 30° a un parell de 20 N·cm i 40 N·cm, utilitzant la simulació d'elements finits no lineals mitjançant l’ANSYS 12.0. La tensió màxima del cap del cargol i l’eina va ser similar a 20 N·cm i 40 N·cm. Encara que es van trobar deformacions majors a 40 N·cm, aquestes van ser petites i no van afectar el rendiment de l’enllaç. A més, el valor del parell de ruptura de l’enllaç amb rosca M2 va ser de 55 N·cm per a 0° i 30° i 47,5 N·cm per a 15°. L'anàlisi d'elements finits va mostrar que aquest nou cargol de cap esfèric i la seva respectiva eina són una bona solució per utilitzar en pròtesis amb orificis angulats cargolades a implants. Finalment, es van desenvolupar les proves mecàniques necessàries per adquirir dades més fiables i comprendre millor el seu comportament sota condicions de fatiga per tal de determinar la resistència a la torsió del conjunt cargol i eina Ball Head System (BHS) a 0°, 20° i 30° d’angulació; per comparar el conjunt BHS amb el sistema de eina hexagonal de 1,30 mm (HexS) a 20°; i analitzar la condició del conjunt BHS després de 10 i 30 iteracions amb un parell de 30 N·cm a una angulació de 30°. El conjunt BHS permet un parell de fins a 54 N·cm. En les mateixes condicions, el conjunt BHS va mostrar més resistència de parell que el conjunt d’HexS. Aquest últim es va haver de descargolar amb una eina de pressió de taller. Rellevància clínica: Aquest nou conjunt cargol i eina BHS es pot utilitzar per a orificis angulats de fins a 30º, és visualment fàcil d’identificar i fins i tot en presència de deformació del cap del cargol, la majoria es poden descargolar amb la seva pròpia eina.[eng] The primary objective of this study was to design the optimal geometry of a novel screwdriver; create the grooves on a ball head screw; and demonstrate its resistance to a torque of up to 40 N·cm at an angulation of 0, 15 and 30 degrees by using nonlinear finite element analysis (FEA). A secondary objective was to create a foolproof and easily recognizable system. The grooved ball head screw and geometry of the screwdriver, functioning from an angulation of 0° to 30°, was generated using Pro-ENGINEER Wildfire 5.0 software. Static structural analyses between bodies in contact were performed at different angles of 0°, 15° and 30° at a torque of 20 N·cm and 40 N·cm, using nonlinear finite element simulation by means of ANSYS 12.0. The maximum stress supported by the ball head screw and screwdriver was similar at 20 N·cm and 40 N·cm. Although greater deformations were found at 40 N·cm, these were small and might not affect the performance of the system. Besides, the rupture torque value for the M2 connection was 55 N·cm for 0° and 30°, and 47.5 N·cm for 15°. Finite element analysis showed this novel ball head screw and screwdriver system to be a good solution for angled screw channels in implant-supported prostheses. Finally, the needed mechanical tests to acquire more reliable data and to better understand its behaviour under fatigue conditions were developed in order to determine the torsion resistance of the Ball Head System (BHS) screw and screwdriver set at 0°, 20° and 30° angulations; to compare the BHS set with the 1.30 mm hexagonal screwdriver system (HexS) at 20°; and analyse the condition of the BHS after 10 and 30 iterations with 30 N·cm torque at 30° angulation. The BHS allows tightening at a torque of up to 54 N·cm. Under the same conditions, BHS showed more torque resistance than HexS, which could not be removed. Clinical relevance: This new system can be used for angled screw channels, and even in presence of deformation, most can be removed with their own screwdriver

    Novel ball head screw and screwdriver design for implant-supported prostheses with angled channels: a finite element analysis

    No full text
    The primary objective of this study was to design the optimal geometry of a novel screwdriver, create the grooves on a ball head screw, and demonstrate its resistance to a torque of up to 40 Ncm at angulations of 0°, 15°, and 30° by using nonlinear finite element analysis. A secondary objective was to create a foolproof, easily recognizable system. The grooved ball head screw and geometry of the screwdriver, functioning from an angulation of 0° to 30°, was generated using Pro-ENGINEER Wildfire 5.0 software. Static structural analyses among bodies in contact were performed at different angles of 0°, 15°, and 30° at a torque of 20 Ncm and 40 Ncm using nonlinear finite element simulation by means of ANSYS 12.0. The maximum stress supported by the ball head screw and screwdriver was similar at 20 Ncm and 40 Ncm. Although greater deformations were found at 40 Ncm, these were small and might not affect the performance of the system. Further, the rupture torque value for the M2 connection was 55 Ncm for 0° and 30°, and 47.5 Ncm for 15°. Numerical simulation showed that the ball head system design can achieve the mechanical strength requirements expected for screws used in implant-supported restorations at an angulation of up to 30°. Finite element analysis showed this novel ball head screw and screwdriver system to be a good solution for angled screw channels in implant-supported prostheses

    Novel ball head screw and screwdriver design for implant-supported prostheses with angled channels: a finite element analysis

    No full text
    The primary objective of this study was to design the optimal geometry of a novel screwdriver, create the grooves on a ball head screw, and demonstrate its resistance to a torque of up to 40 Ncm at angulations of 0°, 15°, and 30° by using nonlinear finite element analysis. A secondary objective was to create a foolproof, easily recognizable system. The grooved ball head screw and geometry of the screwdriver, functioning from an angulation of 0° to 30°, was generated using Pro-ENGINEER Wildfire 5.0 software. Static structural analyses among bodies in contact were performed at different angles of 0°, 15°, and 30° at a torque of 20 Ncm and 40 Ncm using nonlinear finite element simulation by means of ANSYS 12.0. The maximum stress supported by the ball head screw and screwdriver was similar at 20 Ncm and 40 Ncm. Although greater deformations were found at 40 Ncm, these were small and might not affect the performance of the system. Further, the rupture torque value for the M2 connection was 55 Ncm for 0° and 30°, and 47.5 Ncm for 15°. Numerical simulation showed that the ball head system design can achieve the mechanical strength requirements expected for screws used in implant-supported restorations at an angulation of up to 30°. Finite element analysis showed this novel ball head screw and screwdriver system to be a good solution for angled screw channels in implant-supported prostheses
    corecore