81 research outputs found

    Diverse CD81 proteins support hepatitis C virus infection.

    Get PDF
    Hepatitis C virus (HCV) entry is dependent on CD81. To investigate whether the CD81 sequence is a determinant of HCV host range, we expressed a panel of diverse CD81 proteins and tested their ability to interact with HCV. CD81 large extracellular loop (LEL) sequences were expressed as recombinant proteins; the human and, to a low level, the African green monkey sequences bound soluble HCV E2 (sE2) and inhibited infection by retrovirus pseudotype particles bearing HCV glycoproteins (HCVpp). In contrast, mouse or rat CD81 proteins failed to bind sE2 or to inhibit HCVpp infection. However, CD81 proteins from all species, when expressed in HepG2 cells, conferred susceptibility to infection by HCVpp and cell culture-grown HCV to various levels, with the rat sequence being the least efficient. Recombinant human CD81 LEL inhibited HCVpp infectivity only if present during the virus-cell incubation, consistent with a role for CD81 after virus attachment. Amino acid changes that abrogate sE2 binding (I182F, N184Y, and F186S, alone or in combination) were introduced into human CD81. All three amino acid changes in human CD81 resulted in a molecule that still supported HCVpp infection, albeit with reduced efficiency. In summary, there is a remarkable plasticity in the range of CD81 sequences that can support HCV entry, suggesting that CD81 polymorphism may contribute to, but alone does not define, the HCV susceptibility of a species. In addition, the capacity to support viral entry is only partially reflected by assays measuring sE2 interaction with recombinant or full-length CD81 proteins

    Type I interferon rapidly restricts infectious hepatitis C virus particle genesis

    Get PDF
    Interferon-alpha (IFNα) has been used to treat chronic hepatitis C virus (HCV) infection for over 20 years with varying efficacy, depending on the infecting viral genotype. The mechanism of action of IFNα is not fully understood, but is thought to target multiple stages of the HCV lifecycle, inhibiting viral transcription and translation leading to a degradation of viral RNA and protein expression in the infected cell. IFNα induces the expression of an array of interferon-stimulated genes within minutes of receptor engagement; however, the impact of these early responses on the viral lifecycle are unknown. We demonstrate that IFNα inhibits the genesis of infectious extracellular HCV particles within 2 hours of treating infected cells, with minimal effect on the intracellular viral burden. Importantly, this short duration of IFNα treatment of infected cells significantly reduced cell-free and cell-to-cell dissemination. The secreted viral particles showed no apparent change in protein content or density, demonstrating that IFNα inhibits particle infectivity but not secretion rates. To investigate whether particles released from IFNα-treated cells have a reduced capacity to establish infection we used HCV lentiviral pseudotypes (HCVpp) and demonstrated a defect in cell entry. Using a panel of monoclonal antibodies targeting the E2 glycoprotein, we demonstrate that IFNα alters glycoprotein conformation and receptor utilization. Conclusion: These observations show a previously unreported and rapid effect of IFNα on HCV particle infectivity that inhibits de novo infection events. Evasion of this response may be a contributing factor in whether a patient achieves early or rapid virological response, a key indicator of progression to sustained virological response or clearance of viral infection. (Hepatology 2014;60:1890–1900

    Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells

    Get PDF
    The primary reservoir for hepatitis C virus (HCV) replication is believed to be hepatocytes, which are highly polarized with tight junctions (TJ) separating their basolateral and apical domains. HepG2 cells develop polarity over time, resulting in the formation and remodeling of bile canalicular (BC) structures. HepG2 cells expressing CD81 provide a model system to study the effects of hepatic polarity on HCV infection. We found an inverse association between HepG2-CD81 polarization and HCV pseudoparticle entry. As HepG2 cells polarize, discrete pools of claudin-1 (CLDN1) at the TJ and basal/lateral membranes develop, consistent with the pattern of receptor staining observed in liver tissue. The TJ and nonjunctional pools of CLDN1 show an altered association with CD81 and localization in response to the PKA antagonist Rp-8-Br-cyclic AMPs (cAMPs). Rp-8-Br-cAMPs reduced CLDN1 expression at the basal membrane and inhibited HCV infection, supporting a model where the nonjunctional pools of CLDN1 have a role in HCV entry. Treatment of HepG2 cells with proinflammatory cytokines, tumor necrosis factor alpha and gamma interferon, perturbed TJ integrity but had minimal effect(s) on cellular polarity and HCV infection, suggesting that TJ integrity does not limit HCV entry into polarized HepG2 cells. In contrast, activation of PKC with phorbol ester reduced TJ integrity, ablated HepG2 polarity, and stimulated HCV entry. Overall, these data show that complex hepatocyte-like polarity alters CLDN1 localization and limits HCV entry, suggesting that agents which disrupt hepatocyte polarity may promote HCV infection and transmission within the liver

    Identification of caspase 3 motifs and critical aspartate residues in human Phospholipase D1b and Phopsholipase D2a

    Get PDF
    Stimulation of mammalian cells frequently initiates phospholipase D-catalysed hydrolysis of phosphatidylcholine in the plasma membrane to yield phosphatidic acid (PA) a novel lipid messenger. PA plays a regulatory role in important cellular processes such as secretion, cellular shape change and movement. A number of studies have highlighted that PLD-based signalling also plays a pro-mitogenic and pro-survival role in cells and therefore anti-apoptotic. We show that human PLD1b and PLD2a contain functional caspase-3 cleavage sites and identify the critical aspartate residues within PLD1b that affect its activation by phorbol esters and attenuate phosphatidylcholine hydrolysis during apoptosis

    CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry.

    Get PDF
    Hepatitis C virus (HCV) is an enveloped positive-stranded RNA hepatotropic virus. HCV pseudoparticles infect liver-derived cells, supporting a model in which liver-specific molecules define HCV internalization. Three host cell molecules have been reported to be important entry factors or receptors for HCV internalization: scavenger receptor BI, the tetraspanin CD81, and the tight junction protein claudin-1 (CLDN1). None of the receptors are uniquely expressed within the liver, leading us to hypothesize that their organization within hepatocytes may explain receptor activity. Since CD81 and CLDN1 act as coreceptors during late stages in the entry process, we investigated their association in a variety of cell lines and human liver tissue. Imaging techniques that take advantage of fluorescence resonance energy transfer (FRET) to study protein-protein interactions have been developed. Aequorea coerulescens green fluorescent protein- and Discosoma sp. red-monomer fluorescent protein-tagged forms of CD81 and CLDN1 colocalized, and FRET occurred between the tagged coreceptors at comparable frequencies in permissive and nonpermissive cells, consistent with the formation of coreceptor complexes. FRET occurred between antibodies specific for CD81 and CLDN1 bound to human liver tissue, suggesting the presence of coreceptor complexes in liver tissue. HCV infection and treatment of Huh-7.5 cells with recombinant HCV E1-E2 glycoproteins and anti-CD81 monoclonal antibody modulated homotypic (CD81-CD81) and heterotypic (CD81-CLDN1) coreceptor protein association(s) at specific cellular locations, suggesting distinct roles in the viral entry process

    Production, purification and characterization of recombinant, full-length human claudin-1

    Get PDF
    The transmembrane domain proteins of the claudin superfamily are the major structural components of cellular tight junctions. One family member, claudin-1, also associates with tetraspanin CD81 as part of a receptor complex that is essential for hepatitis C virus (HCV) infection of the liver. To understand the molecular basis of claudin-1/CD81 association we previously produced and purified milligram quantities of functional, full-length CD81, which binds a soluble form of HCV E2 glycoprotein (sE2). Here we report the production, purification and characterization of claudin-1. Both yeast membrane-bound and detergent-extracted, purified claudin-1 were antigenic and recognized by specific antibodies. Analytical ultracentrifugation demonstrated that extraction with n-octyl-ß-d-glucopyranoside yielded monodispersed, dimeric pools of claudin-1 while extraction with profoldin-8 or n-decylphosphocholine yielded a dynamic mixture of claudin-1 oligomers. Neither form bound sE2 in line with literature expectations, while further functional analysis was hampered by the finding that incorporation of claudin-1 into proteoliposomes rendered them intractable to study. Dynamic light scattering demonstrated that claudin-1 oligomers associate with CD81 in vitro in a defined molar ratio of 1:2 and that complex formation was enhanced by the presence of cholesteryl hemisuccinate. Attempts to assay the complex biologically were limited by our finding that claudin-1 affects the properties of proteoliposomes. We conclude that recombinant, correctly-folded, full-length claudin-1 can be produced in yeast membranes, that it can be extracted in different oligomeric forms that do not bind sE2 and that a dynamic preparation can form a specific complex with CD81 in vitro in the absence of any other cellular components. These findings pave the way for the structural characterization of claudin-1 alone and in complex with CD81

    Assessing the knowledge of the potential harm to others caused by second-hand smoke and its impact on protective behaviours at home

    Get PDF
    BACKGROUND: Smokers' knowledge of the risks of second-hand smoke (SHS) and the role this plays in implementing behaviours to reduce the SHS exposure of others have not been thoroughly explored. Mass media health promotion is used to promote behaviour change partly by providing information on the consequences of behaviour. In England, between 2003 and 2006, frequent mass media campaigns highlighted the toxicity of SHS. OBJECTIVES: To examine peoples' knowledge of SHS-related illnesses in England over time, identify the determinants of good knowledge and to assess its importance in predicting SHS-protective behaviours. METHODS: Statistical analysis of repeat cross-sectional data (1996–2008) from the Omnibus Survey to explore the trends and determinants of knowledge of SHS-related illnesses and the determinants of SHS-protective behaviours. RESULTS: Only 40% of smokers had ‘good’ knowledge of SHS-related illnesses compared with 65% of never smokers. Knowledge increased markedly when frequent SHS-related mass media campaigns (2003–06) ran, compared with earlier years (1996–2002). Smokers with better knowledge were more likely to have smoke-free homes [odds ratio (OR): 1.10, 1.04–1.16] and abstain from smoking in a room with children (OR: 1.11, 1.09–1.14). CONCLUSIONS: The low levels of knowledge of some SHS-related conditions, especially among smokers, and the relationship between knowledge and SHS-protective behaviours, suggest that greater efforts to educate smokers about the risks associated with SHS are worthwhile

    From theory to practice: improving the impact of health services research

    Get PDF
    BACKGROUND: While significant strides have been made in health research, the incorporation of research evidence into healthcare decision-making has been marginal. The purpose of this paper is to provide an overview of how the utility of health services research can be improved through the use of theory. Integrating theory into health services research can improve research methodology and encourage stronger collaboration with decision-makers. DISCUSSION: Recognizing the importance of theory calls for new expectations in the practice of health services research. These include: the formation of interdisciplinary research teams; broadening the training for those who will practice health services research; and supportive organizational conditions that promote collaboration between researchers and decision makers. Further, funding bodies can provide a significant role in guiding and supporting the use of theory in the practice of health services research. SUMMARY: Institutions and researchers should incorporate the use of theory if health services research is to fulfill its potential for improving the delivery of health care
    corecore