122 research outputs found

    Molecular genotyping in a malaria treatment trial in Uganda - unexpected high rate of new infections within 2 weeks after treatment.

    Get PDF
    Polymerase chain reaction (PCR) genotyping of malaria parasites in drug efficacy trials helps differentiate reinfections from recrudescences. A combination therapy trial of one (n = 115) or three (n = 117) days artesunate (1AS, 3AS 4 mg/kg/day) plus sulphadoxine-pyrimethamine (SP) vs. SP alone (n = 153) was conducted in Mbarara, a mesoendemic area of western Uganda. All paired recurrent Plasmodium falciparum parasitaemias on days 7, 14, 21 and 28 post-treatment were genotyped by PCR amplification and analysis of glutamate-rich protein (glurp) and merozoite surface proteins (msp) 1 and 2 genes to distinguish recrudescent from new infections. A total of 156 (1AS = 61, 3AS = 35, SP alone = 60) of 199 paired recurrent samples were successfully analysed and were resolved as 79 recrudescences (1AS = 32, 3AS = 8, SP = 39) and 77 as new infections (1AS = 29, 3AS = 27, SP = 21). The ratios of proportions of new to recrudescent infections were 0.2, 0.9, 1.4 and 1.9 on days 7, 14, 21 and 28, respectively (P < 0.001, chi(2) test for linear trend). Unexpected high new infection rates were observed early in follow-up on days 7 [5/26 (19.2%)] and 14 [24/51 (47.1%)]. These results impact significantly on resistance monitoring and point to the value of genotyping all recurrent infections in antimalarial trials

    Gametocytes: insights gained during a decade of molecular monitoring

    Get PDF
    In vertebrate hosts, malaria parasites produce specialized male and female sexual stages (gametocytes). Soon after being taken up by a mosquito, gametocytes rapidly produce gametes and, once mated, they infect their vector and can be transmitted to new hosts. Despite being the parasite stages that were first identified (over a century ago), gametocytes have remained elusive, and basic questions remain concerning their biology. However, the postgenomic era has substantiated information on the specialized molecular machinery of gametocytogenesis and expedited the development of molecular tools to detect and quantify gametocytes. The application of such highly sensitive and specific tools has opened up novel approaches and provided new insights into gametocyte biology. Here, we review the discoveries made during the past decade, highlight unanswered questions and suggest new directions

    Influence of consecutive-day blood sampling on polymerase chain reaction-adjusted parasitological cure rates in an antimalarial-drug trial conducted in Tanzania

    Get PDF
    We assessed the influence that consecutive-day blood sampling, compared with single-day blood sampling, had on polymerase chain reaction (PCR)-adjusted parasitological cure after stepwise genotyping of merozoite surface proteins 2 (msp2) and 1 (msp1) in 106 children in Tanzania who had uncomplicated falciparum malaria treated with either sulfadoxine-pyrimethamine or artemether- lumefantrine; 78 of these children developed recurrent parasitemia during the 42-day follow-up period. Initial msp2 genotyping identified 27 and 33 recrudescences by use of single- and consecutive-day sampling, respectively; in subsequent msp1 genotyping, 17 and 21 of these episodes, respectively, were still classified as recrudescences; these results indicate a similar sensitivity of the standard single-day PCR protocol - that is, 82% (27/33) and 81% (17/21), in both genotyping steps. Interpretation of PCR-adjusted results will significantly depend on methodology. © 2007 by the Infectious Diseases Society of America. All rights reserved

    Plasmodium falciparum multidrug resistance protein 1 and artemisinin-based combination therapy in Africa

    Get PDF
    Plasmodium falciparum response mechanisms to the major artemisinin-based combination therapies (ACTs) are largely unknown. Multidrug-resistance protein (MRP)-like adenosine triphosphate (ATP)-binding cassette transporters are known to be related to multidrug resistance in many organisms. Therefore, we hypothesized that sequence variation in pfmrp1 can contribute to decreased parasite sensitivity to ACT. Through sequencing of the pfmrp1 open reading frame for 103 geographically diverse P. falciparum infections, we identified 27 single-nucleotide polymorphisms (SNPs), of which 21 were nonsynonymous and 6 synonymous. Analyses of clinical efficacy trials with artesunate-amodiaquine and artemether-lumefantrine detected a specific selection of the globally prevalent I876V SNP in recurrent infections after artemether-lumefantrine treatment. Additional in silico studies suggested an influence of variation in amino acid 876 on the ATP hydrolysis cycle of pfMRP1 with potential impact on protein functionality. Our data suggest for the first time, to our knowledge, the involvement of pfMRP1 in P. falciparum in vivo response to ACT.info:eu-repo/semantics/publishedVersio

    Detectability of Plasmodium falciparum clones

    Get PDF
    BACKGROUND: In areas of high transmission people often harbour multiple clones of Plasmodium falciparum, but even PCR-based diagnostic methods can only detect a fraction (the detectability, q) of all clones present in a host. Accurate measurements of detectability are desirable since it affects estimates of multiplicity of infection, prevalence, and frequency of breakthrough infections in clinical drug trials. Detectability can be estimated by typing repeated samples from the same host but it has been unclear what should be the time interval between the samples and how the data should be analysed. METHODS: A longitudinal molecular study was conducted in the Kassena-Nankana district in northern Ghana. From each of the 80 participants, four finger prick samples were collected over a period of 8 days, and tested for presence of different Merozoite Surface Protein (msp) 2 genotypes. Implications for estimating q were derived from these data by comparing the fit of statistical models of serial dependence and over-dispersion. RESULTS: The distribution of the frequencies of detection for msp2 genotypes was close to binomial if the time span between consecutive blood samples was at least 7 days. For shorter intervals the probabilities of detection were positively correlated, i.e. the shorter the interval between two blood collections, the more likely the diagnostic results matched for a particular genotype. Estimates of q were rather insensitive to the statistical model fitted. CONCLUSIONS: A simple algorithm based on analysing blood samples collected 7 days apart is justified for generating robust estimates of detectability. The finding of positive correlation of detection probabilities for short time intervals argues against imperfect detection being directly linked to the 48-hour periodicity of P. falciparum. The results suggest that the detectability of a given parasite clone changes over time, at an unknown rate, but fast enough to regard blood samples taken one week apart as statistically independent

    Time delays in the diagnosis and treatment of malaria in non-endemic countries: a systematic review

    Get PDF
    Background Delays in diagnosis and treatment for malaria are associated with an increased risk for severe disease and mortality. Identifying the extent of patient and health system delay can provide a benchmark against which interventions to reduce delays can be measured. Methods We performed an electronic search in PubMed, EMBASE, Web of Science and LILACS for studies reporting time to diagnosis and treatment after return from travel, onset of symptoms and seeking healthcare in non-endemic countries. Additionally, theses, conference proceedings and nationally reported surveillance data were also searched for information on time delays. There were no language restrictions and all the studies were assessed for methodological quality. Results Data from 69 papers out of 1719 identified records published between 2005 and 2017 were extracted; our findings show that median diagnosis delays of four or more days are common and patient delays accounted for a large proportion of diagnostic delay. There were limited data available on medical diagnostic delay. Conclusion Patient delays accounted for a large proportion of the overall diagnostic delay; however the retrospective nature of the studies could have overestimated patient delay since previous healthcare contacts were not included. Additionally, the high frequency of studies reporting a clinically significant delay is a major concern

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity

    A cohort study of Plasmodium falciparum infection dynamics in Western Kenya Highlands

    Get PDF
    Abstract Background The Kenyan highlands were malaria-free before the 1910s, but a series of malaria epidemics have occurred in the highlands of western Kenya since the 1980s. Longitudinal studies of the genetic structure, complexity, infection dynamics, and duration of naturally acquired Plasmodium falciparum infections are needed to facilitate a comprehensive understanding of malaria epidemiology in the complex Kenyan highland eco-epidemiological systems where malaria recently expanded, as well as the evaluation of control measures. Methods We followed a cohort of 246 children residing in 3 villages at altitudes 1430 - 1580 m in western Kenya. Monthly parasitological surveys were undertaken for one year, yielding 866 P. falciparum isolates that were analyzed using 10 microsatellite markers. Results Infection complexity and genetic diversity were high (HE = 0.787-0.816), with ≥83% of infections harboring more than one parasite clone. Diversity remained high even during the low malaria transmission season. There was no significant difference between levels of genetic diversity and population structure between high and low transmission seasons. Infection turn-over rate was high, with the average infection duration of single parasite genotypes being 1.11 months, and the longest genotype persistence was 3 months. Conclusions These data demonstrate that despite the relatively recent spread of malaria to the highlands, parasite populations seem to have stabilized with no evidence of bottlenecks between seasons, while the ability of residents to clear or control infections indicates presence of effective anti-plasmodial immune mechanisms

    Multiplicity of Plasmodium falciparum infection in asymptomatic children in Senegal: relation to transmission, age and erythrocyte variants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals living in malaria endemic areas generally harbour multiple parasite strains. Multiplicity of infection (MOI) can be an indicator of immune status. However, whether this is good or bad for the development of immunity to malaria, is still a matter of debate. This study aimed to examine the MOI in asymptomatic children between two and ten years of age and to relate it to erythrocyte variants, clinical attacks, transmission levels and other parasitological indexes.</p> <p>Methods</p> <p>Study took place in Niakhar area in Senegal, where malaria is mesoendemic and seasonal. Three hundred and seventy two asymptomatic children were included. Sickle-cell trait, G6PD deficiency (A- and Santamaria) and α<sup>+</sup>-thalassaemia (-α<sup>3.7 </sup>type) were determined using PCR. Multiplicity of <it>Plasmodium falciparum </it>infection, i.e. number of concurrent clones, was defined by PCR-based genotyping of the merozoite surface protein-2 (<it>msp2</it>), before and at the end of the malaria transmission season. The χ<sup>2</sup>-test, ANOVA, multivariate linear regression and logistic regression statistical tests were used for data analysis.</p> <p>Results</p> <p>MOI was significantly higher at the end of transmission season. The majority of PCR positive subjects had multiple infections at both time points (64% before and 87% after the transmission season). MOI did not increase in α-thalassaemic and G6PD mutated children. The ABO system and HbAS did not affect MOI at any time points. No association between MOI and clinical attack was observed. MOI did not vary over age at any time points. There was a significant correlation between MOI and parasite density, as the higher parasite counts increases the probability of having multiple infections.</p> <p>Conclusion</p> <p>Taken together our data revealed that α-thalassaemia may have a role in protection against certain parasite strains. The protection against the increase in MOI after the transmission season conferred by G6PD deficiency is probably due to clearance of the malaria parasite at early stages of infection. The ABO system and HbAS are involved in the severity of the disease but do not affect asymptomatic infections. MOI was not age-dependent, in the range of two to ten years, but was correlated with parasite density. However some of these observations need to be confirmed including larger sample size with broader age range and using other <it>msp2 </it>genotyping method.</p

    Stable and Unstable Malaria Hotspots in Longitudinal Cohort Studies in Kenya

    Get PDF
    BACKGROUND: Infectious diseases often demonstrate heterogeneity of transmission among host populations. This heterogeneity reduces the efficacy of control strategies, but also implies that focusing control strategies on "hotspots" of transmission could be highly effective. METHODS AND FINDINGS: In order to identify hotspots of malaria transmission, we analysed longitudinal data on febrile malaria episodes, asymptomatic parasitaemia, and antibody titres over 12 y from 256 homesteads in three study areas in Kilifi District on the Kenyan coast. We examined heterogeneity by homestead, and identified groups of homesteads that formed hotspots using a spatial scan statistic. Two types of statistically significant hotspots were detected; stable hotspots of asymptomatic parasitaemia and unstable hotspots of febrile malaria. The stable hotspots were associated with higher average AMA-1 antibody titres than the unstable clusters (optical density [OD] = 1.24, 95% confidence interval [CI] 1.02-1.47 versus OD = 1.1, 95% CI 0.88-1.33) and lower mean ages of febrile malaria episodes (5.8 y, 95% CI 5.6-6.0 versus 5.91 y, 95% CI 5.7-6.1). A falling gradient of febrile malaria incidence was identified in the penumbrae of both hotspots. Hotspots were associated with AMA-1 titres, but not seroconversion rates. In order to target control measures, homesteads at risk of febrile malaria could be predicted by identifying the 20% of homesteads that experienced an episode of febrile malaria during one month in the dry season. That 20% subsequently experienced 65% of all febrile malaria episodes during the following year. A definition based on remote sensing data was 81% sensitive and 63% specific for the stable hotspots of asymptomatic malaria. CONCLUSIONS: Hotspots of asymptomatic parasitaemia are stable over time, but hotspots of febrile malaria are unstable. This finding may be because immunity offsets the high rate of febrile malaria that might otherwise result in stable hotspots, whereas unstable hotspots necessarily affect a population with less prior exposure to malaria
    corecore